Update app.py
Browse files
app.py
CHANGED
@@ -3,32 +3,38 @@ import cv2
|
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import pickle
|
|
|
6 |
from tensorflow.keras.models import load_model
|
7 |
from tensorflow.keras.preprocessing.image import img_to_array
|
8 |
import easyocr
|
|
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
11 |
model_path = "MobileNetBest_Model.h5"
|
12 |
label_path = "MobileNet_Label_Encoder.pkl"
|
13 |
|
14 |
model = load_model(model_path)
|
15 |
-
print("
|
16 |
|
17 |
-
#
|
18 |
try:
|
19 |
with open(label_path, 'rb') as f:
|
20 |
label_map = pickle.load(f)
|
21 |
index_to_label = {v: k for k, v in label_map.items()}
|
22 |
-
print("Label encoder loaded:", index_to_label)
|
23 |
except:
|
24 |
index_to_label = {0: "Handwritten", 1: "Computerized"}
|
25 |
-
print("
|
26 |
|
27 |
-
#
|
28 |
-
reader = easyocr.Reader(['en'], gpu=
|
29 |
-
print("EasyOCR
|
30 |
|
31 |
-
#
|
32 |
def classify_text_region(region_img):
|
33 |
try:
|
34 |
region_img = cv2.resize(region_img, (224, 224))
|
@@ -44,10 +50,10 @@ def classify_text_region(region_img):
|
|
44 |
class_idx = np.argmax(preds[0])
|
45 |
return index_to_label.get(class_idx, "Unknown")
|
46 |
except Exception as e:
|
47 |
-
print("Classification error:", e)
|
48 |
return "Unknown"
|
49 |
|
50 |
-
#
|
51 |
def AnnotatedTextDetection_EasyOCR_from_array(img):
|
52 |
results = reader.readtext(img)
|
53 |
annotated_results = []
|
@@ -59,6 +65,7 @@ def AnnotatedTextDetection_EasyOCR_from_array(img):
|
|
59 |
x1, y1 = map(int, bbox[0])
|
60 |
x2, y2 = map(int, bbox[2])
|
61 |
crop = img[y1:y2, x1:x2]
|
|
|
62 |
if crop.size == 0:
|
63 |
continue
|
64 |
|
@@ -71,11 +78,10 @@ def AnnotatedTextDetection_EasyOCR_from_array(img):
|
|
71 |
|
72 |
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB), "\n".join(annotated_results)
|
73 |
|
74 |
-
#
|
75 |
def infer(image):
|
76 |
img = np.array(image)
|
77 |
|
78 |
-
# Resize if image is too large
|
79 |
max_dim = 1000
|
80 |
if img.shape[0] > max_dim or img.shape[1] > max_dim:
|
81 |
scale = max_dim / max(img.shape[0], img.shape[1])
|
@@ -84,7 +90,7 @@ def infer(image):
|
|
84 |
annotated_img, result_text = AnnotatedTextDetection_EasyOCR_from_array(img)
|
85 |
return Image.fromarray(annotated_img), result_text
|
86 |
|
87 |
-
#
|
88 |
custom_css = """
|
89 |
body {
|
90 |
background-color: #e6f2ff;
|
@@ -100,7 +106,6 @@ body {
|
|
100 |
}
|
101 |
"""
|
102 |
|
103 |
-
# === Launch Interface ===
|
104 |
demo = gr.Interface(
|
105 |
fn=infer,
|
106 |
inputs=gr.Image(type="pil", label="Upload Image"),
|
@@ -109,8 +114,9 @@ demo = gr.Interface(
|
|
109 |
gr.Textbox(label="Detected Text and Classification")
|
110 |
],
|
111 |
title="Text Detection and Classification",
|
112 |
-
description="
|
113 |
theme="soft",
|
114 |
css=custom_css
|
115 |
)
|
|
|
116 |
demo.launch()
|
|
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import pickle
|
6 |
+
import tensorflow as tf
|
7 |
from tensorflow.keras.models import load_model
|
8 |
from tensorflow.keras.preprocessing.image import img_to_array
|
9 |
import easyocr
|
10 |
+
import torch
|
11 |
|
12 |
+
# ========== GPU Checks ==========
|
13 |
+
print("Torch GPU Available:", torch.cuda.is_available())
|
14 |
+
print("TensorFlow GPU Devices:", tf.config.list_physical_devices('GPU'))
|
15 |
+
|
16 |
+
# ========== Load Model and Label Encoder ==========
|
17 |
model_path = "MobileNetBest_Model.h5"
|
18 |
label_path = "MobileNet_Label_Encoder.pkl"
|
19 |
|
20 |
model = load_model(model_path)
|
21 |
+
print("✅ MobileNet model loaded.")
|
22 |
|
23 |
+
# Label encoder
|
24 |
try:
|
25 |
with open(label_path, 'rb') as f:
|
26 |
label_map = pickle.load(f)
|
27 |
index_to_label = {v: k for k, v in label_map.items()}
|
28 |
+
print("✅ Label encoder loaded:", index_to_label)
|
29 |
except:
|
30 |
index_to_label = {0: "Handwritten", 1: "Computerized"}
|
31 |
+
print("⚠️ Default labels used:", index_to_label)
|
32 |
|
33 |
+
# ========== Initialize EasyOCR (Force GPU) ==========
|
34 |
+
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
|
35 |
+
print("✅ EasyOCR initialized with GPU:", torch.cuda.is_available())
|
36 |
|
37 |
+
# ========== Classify One Region ==========
|
38 |
def classify_text_region(region_img):
|
39 |
try:
|
40 |
region_img = cv2.resize(region_img, (224, 224))
|
|
|
50 |
class_idx = np.argmax(preds[0])
|
51 |
return index_to_label.get(class_idx, "Unknown")
|
52 |
except Exception as e:
|
53 |
+
print("❌ Classification error:", e)
|
54 |
return "Unknown"
|
55 |
|
56 |
+
# ========== OCR & Annotate ==========
|
57 |
def AnnotatedTextDetection_EasyOCR_from_array(img):
|
58 |
results = reader.readtext(img)
|
59 |
annotated_results = []
|
|
|
65 |
x1, y1 = map(int, bbox[0])
|
66 |
x2, y2 = map(int, bbox[2])
|
67 |
crop = img[y1:y2, x1:x2]
|
68 |
+
|
69 |
if crop.size == 0:
|
70 |
continue
|
71 |
|
|
|
78 |
|
79 |
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB), "\n".join(annotated_results)
|
80 |
|
81 |
+
# ========== Inference Function ==========
|
82 |
def infer(image):
|
83 |
img = np.array(image)
|
84 |
|
|
|
85 |
max_dim = 1000
|
86 |
if img.shape[0] > max_dim or img.shape[1] > max_dim:
|
87 |
scale = max_dim / max(img.shape[0], img.shape[1])
|
|
|
90 |
annotated_img, result_text = AnnotatedTextDetection_EasyOCR_from_array(img)
|
91 |
return Image.fromarray(annotated_img), result_text
|
92 |
|
93 |
+
# ========== Gradio UI ==========
|
94 |
custom_css = """
|
95 |
body {
|
96 |
background-color: #e6f2ff;
|
|
|
106 |
}
|
107 |
"""
|
108 |
|
|
|
109 |
demo = gr.Interface(
|
110 |
fn=infer,
|
111 |
inputs=gr.Image(type="pil", label="Upload Image"),
|
|
|
114 |
gr.Textbox(label="Detected Text and Classification")
|
115 |
],
|
116 |
title="Text Detection and Classification",
|
117 |
+
description="Application detects text from images and classify into Handwritten/Computerized Text",
|
118 |
theme="soft",
|
119 |
css=custom_css
|
120 |
)
|
121 |
+
|
122 |
demo.launch()
|