Ramzan0553 commited on
Commit
3ed3fd8
·
verified ·
1 Parent(s): 25968a4

Upload 2 files

Browse files
EasyOpticalCharacterRecognition.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import easyocr
4
+ from tensorflow.keras.models import load_model
5
+ from tensorflow.keras.preprocessing.image import img_to_array
6
+ import pickle
7
+ import os
8
+ from google.colab import drive
9
+
10
+ # === Mount Google Drive ===
11
+ drive.mount('/content/drive')
12
+
13
+ # === Load model and label encoder ===
14
+ model_path = '/content/drive/My Drive/ML1_Project/MobileNet/Model6/MobileNetBest_Model.h5'
15
+ pkl_path = '/content/drive/My Drive/ML1_Project/MobileNet/Model6/MobileNet_Label_Encoder.pkl'
16
+
17
+ model = load_model(model_path)
18
+ print("✅ Model loaded.")
19
+
20
+ if os.path.exists(pkl_path):
21
+ with open(pkl_path, 'rb') as f:
22
+ label_map = pickle.load(f)
23
+ index_to_label = {v: k for k, v in label_map.items()}
24
+ print("✅ Label encoder loaded.")
25
+ else:
26
+ index_to_label = {0: "Handwritten", 1: "Computerized"}
27
+ print("⚠️ Label encoder not found, using default mapping.")
28
+
29
+ # === Classification function ===
30
+ def classify_text_region(region_img):
31
+ try:
32
+ region_img = cv2.resize(region_img, (224, 224))
33
+ region_img = region_img.astype("float32") / 255.0
34
+ region_img = img_to_array(region_img)
35
+ region_img = np.expand_dims(region_img, axis=0)
36
+
37
+ preds = model.predict(region_img)
38
+
39
+ if preds.shape[-1] == 1:
40
+ return "Computerized" if preds[0][0] > 0.5 else "Handwritten"
41
+ else:
42
+ class_idx = np.argmax(preds[0])
43
+ return index_to_label.get(class_idx, "Unknown")
44
+ except Exception as e:
45
+ print("❌ Classification error:", e)
46
+ return "Unknown"
47
+
48
+ # === OCR + Annotation ===
49
+ def AnnotatedTextDetection_EasyOCR_from_array(img):
50
+ reader = easyocr.Reader(['en'], gpu=False)
51
+ results = reader.readtext(img)
52
+ annotated_results = []
53
+
54
+ for (bbox, text, conf) in results:
55
+ if conf < 0.3 or text.strip() == "":
56
+ continue
57
+
58
+ x1, y1 = map(int, bbox[0])
59
+ x2, y2 = map(int, bbox[2])
60
+ w, h = x2 - x1, y2 - y1
61
+
62
+ crop = img[y1:y2, x1:x2]
63
+ if crop.size == 0:
64
+ continue
65
+
66
+ label = classify_text_region(crop)
67
+ annotated_results.append(f"{text.strip()} → {label}")
68
+
69
+ color = (0, 255, 0) if label == "Computerized" else (255, 0, 0)
70
+ cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
71
+ cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1)
72
+
73
+ return cv2.cvtColor(img, cv2.COLOR_BGR2RGB), "\n".join(annotated_results)
74
+
75
+ # === Main image processing function ===
76
+ def process_image(input_image):
77
+ img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
78
+ result_img, text_result = AnnotatedTextDetection_EasyOCR_from_array(img)
79
+ return result_img, text_result
80
+
81
+
MobileNetBest_Model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11fbc2c939321af199451bacab05f6533e6562310e41a498baf1e3cb80cf8b59
3
+ size 28405792