Ramzan0553 commited on
Commit
56ac515
·
verified ·
1 Parent(s): 2f8d8f4

Delete EasyOpticalCharacterRecognition.py

Browse files
Files changed (1) hide show
  1. EasyOpticalCharacterRecognition.py +0 -66
EasyOpticalCharacterRecognition.py DELETED
@@ -1,66 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import easyocr
4
- from tensorflow.keras.models import load_model
5
- from tensorflow.keras.preprocessing.image import img_to_array
6
- import pickle
7
- import os
8
-
9
- # === Load model and label encoder ===
10
- model_path = 'MobileNetBest_Model.h5'
11
- pkl_path = 'MobileNet_Label_Encoder.pkl'
12
-
13
- model = load_model(model_path)
14
- print("✅ Model loaded.")
15
-
16
- # === Classification function ===
17
- def classify_text_region(region_img):
18
- try:
19
- region_img = cv2.resize(region_img, (224, 224))
20
- region_img = region_img.astype("float32") / 255.0
21
- region_img = img_to_array(region_img)
22
- region_img = np.expand_dims(region_img, axis=0)
23
-
24
- preds = model.predict(region_img)
25
-
26
- if preds.shape[-1] == 1:
27
- return "Computerized" if preds[0][0] > 0.5 else "Handwritten"
28
- else:
29
- class_idx = np.argmax(preds[0])
30
- return index_to_label.get(class_idx, "Unknown")
31
- except Exception as e:
32
- print("❌ Classification error:", e)
33
- return "Unknown"
34
-
35
- # === OCR + Annotation ===
36
- def AnnotatedTextDetection_EasyOCR_from_array(img):
37
- reader = easyocr.Reader(['en'], gpu=False)
38
- results = reader.readtext(img)
39
- annotated_results = []
40
-
41
- for (bbox, text, conf) in results:
42
- if conf < 0.3 or text.strip() == "":
43
- continue
44
-
45
- x1, y1 = map(int, bbox[0])
46
- x2, y2 = map(int, bbox[2])
47
- w, h = x2 - x1, y2 - y1
48
-
49
- crop = img[y1:y2, x1:x2]
50
- if crop.size == 0:
51
- continue
52
-
53
- label = classify_text_region(crop)
54
- annotated_results.append(f"{text.strip()} → {label}")
55
-
56
- color = (0, 255, 0) if label == "Computerized" else (255, 0, 0)
57
- cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
58
- cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1)
59
-
60
- return cv2.cvtColor(img, cv2.COLOR_BGR2RGB), "\n".join(annotated_results)
61
-
62
- # === Main image processing function ===
63
- def process_image(input_image):
64
- img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
65
- result_img, text_result = AnnotatedTextDetection_EasyOCR_from_array(img)
66
- return result_img, text_result