import cv2 import numpy as np import easyocr from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array import pickle import os from google.colab import drive # === Mount Google Drive === drive.mount('/content/drive') # === Load model and label encoder === model_path = '/content/drive/My Drive/ML1_Project/MobileNet/Model6/MobileNetBest_Model.h5' pkl_path = '/content/drive/My Drive/ML1_Project/MobileNet/Model6/MobileNet_Label_Encoder.pkl' model = load_model(model_path) print("✅ Model loaded.") if os.path.exists(pkl_path): with open(pkl_path, 'rb') as f: label_map = pickle.load(f) index_to_label = {v: k for k, v in label_map.items()} print("✅ Label encoder loaded.") else: index_to_label = {0: "Handwritten", 1: "Computerized"} print("⚠️ Label encoder not found, using default mapping.") # === Classification function === def classify_text_region(region_img): try: region_img = cv2.resize(region_img, (224, 224)) region_img = region_img.astype("float32") / 255.0 region_img = img_to_array(region_img) region_img = np.expand_dims(region_img, axis=0) preds = model.predict(region_img) if preds.shape[-1] == 1: return "Computerized" if preds[0][0] > 0.5 else "Handwritten" else: class_idx = np.argmax(preds[0]) return index_to_label.get(class_idx, "Unknown") except Exception as e: print("❌ Classification error:", e) return "Unknown" # === OCR + Annotation === def AnnotatedTextDetection_EasyOCR_from_array(img): reader = easyocr.Reader(['en'], gpu=False) results = reader.readtext(img) annotated_results = [] for (bbox, text, conf) in results: if conf < 0.3 or text.strip() == "": continue x1, y1 = map(int, bbox[0]) x2, y2 = map(int, bbox[2]) w, h = x2 - x1, y2 - y1 crop = img[y1:y2, x1:x2] if crop.size == 0: continue label = classify_text_region(crop) annotated_results.append(f"{text.strip()} → {label}") color = (0, 255, 0) if label == "Computerized" else (255, 0, 0) cv2.rectangle(img, (x1, y1), (x2, y2), color, 2) cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1) return cv2.cvtColor(img, cv2.COLOR_BGR2RGB), "\n".join(annotated_results) # === Main image processing function === def process_image(input_image): img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) result_img, text_result = AnnotatedTextDetection_EasyOCR_from_array(img) return result_img, text_result