import gradio as gr import cv2 import numpy as np from PIL import Image import pickle import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array import easyocr import torch # ========== GPU Checks ========== print("Torch GPU Available:", torch.cuda.is_available()) print("TensorFlow GPU Devices:", tf.config.list_physical_devices('GPU')) # ========== Load Model and Label Encoder ========== model_path = "MobileNetBest_Model.h5" label_path = "MobileNet_Label_Encoder.pkl" model = load_model(model_path) print("✅ MobileNet model loaded.") # Label encoder try: with open(label_path, 'rb') as f: label_map = pickle.load(f) index_to_label = {v: k for k, v in label_map.items()} print("✅ Label encoder loaded:", index_to_label) except: index_to_label = {0: "Handwritten", 1: "Computerized"} print("⚠️ Default labels used:", index_to_label) # ========== Initialize EasyOCR (Force GPU) ========== reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available()) print("✅ EasyOCR initialized with GPU:", torch.cuda.is_available()) # ========== Classify One Region ========== def classify_text_region(region_img): try: region_img = cv2.resize(region_img, (224, 224)) region_img = region_img.astype("float32") / 255.0 region_img = img_to_array(region_img) region_img = np.expand_dims(region_img, axis=0) preds = model.predict(region_img) if preds.shape[-1] == 1: return "Computerized" if preds[0][0] > 0.5 else "Handwritten" else: class_idx = np.argmax(preds[0]) return index_to_label.get(class_idx, "Unknown") except Exception as e: print("❌ Classification error:", e) return "Unknown" # ========== OCR & Annotate ========== def AnnotatedTextDetection_EasyOCR_from_array(img): results = reader.readtext(img) annotated_results = [] for (bbox, text, conf) in results: if conf < 0.3 or text.strip() == "": continue x1, y1 = map(int, bbox[0]) x2, y2 = map(int, bbox[2]) crop = img[y1:y2, x1:x2] if crop.size == 0: continue label = classify_text_region(crop) annotated_results.append(f"{text.strip()} → {label}") color = (0, 255, 0) if label == "Computerized" else (255, 0, 0) cv2.rectangle(img, (x1, y1), (x2, y2), color, 2) cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1) return cv2.cvtColor(img, cv2.COLOR_BGR2RGB), "\n".join(annotated_results) # ========== Inference Function ========== def infer(image): img = np.array(image) max_dim = 1000 if img.shape[0] > max_dim or img.shape[1] > max_dim: scale = max_dim / max(img.shape[0], img.shape[1]) img = cv2.resize(img, (int(img.shape[1]*scale), int(img.shape[0]*scale))) annotated_img, result_text = AnnotatedTextDetection_EasyOCR_from_array(img) return Image.fromarray(annotated_img), result_text # ========== Gradio UI ========== with gr.Blocks( title="Text Type Classifier", css=""" body { background-color: white !important; color: red !important; } h1, h2, h3, h4, h5, h6, label, .gr-box, .gr-button { color: red !important; } .outer-box { border: 8px solid black; border-radius: 16px; padding: 24px; background-color: white; } .gr-box { border: 6px solid #0288d1 !important; border-radius: 12px; padding: 16px; background-color: white; box-shadow: 0px 2px 10px rgba(0,0,0,0.1); } .gr-button { background-color: #0288d1 !important; color: white !important; font-weight: bold; border-radius: 8px; margin-top: 10px; } .gr-button:hover { background-color: #01579b !important; } """ ) as demo: with gr.Column(elem_classes=["outer-box"]): gr.Markdown( """