File size: 20,778 Bytes
9792fe2
34b1e95
 
9792fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
0f5112d
 
 
 
9792fe2
 
 
 
 
 
 
 
 
 
 
0f5112d
 
9792fe2
 
 
 
 
 
 
 
 
 
 
0f5112d
9792fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f5112d
 
9792fe2
 
 
 
 
 
 
 
0f5112d
9792fe2
 
 
 
 
0f5112d
9792fe2
 
 
0f5112d
9792fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f5112d
9792fe2
 
 
0f5112d
 
 
34b1e95
 
 
 
9792fe2
0f5112d
 
 
 
 
 
 
 
 
9792fe2
0f5112d
 
 
 
 
 
 
9792fe2
34b1e95
 
 
 
 
 
 
0f5112d
34b1e95
9792fe2
0f5112d
 
 
 
 
 
 
 
9792fe2
34b1e95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f5112d
 
 
34b1e95
 
 
 
 
 
 
 
 
9792fe2
0f5112d
9792fe2
0f5112d
9792fe2
0f5112d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9792fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f5112d
9792fe2
 
 
 
34b1e95
9792fe2
34b1e95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9792fe2
0f5112d
 
9792fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f5112d
9792fe2
 
 
 
0f5112d
 
9792fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34b1e95
 
 
 
 
9792fe2
 
 
 
34b1e95
9792fe2
 
 
 
34b1e95
9792fe2
 
 
0f5112d
 
 
 
 
9792fe2
 
 
34b1e95
 
 
 
 
 
 
 
 
 
0f5112d
9792fe2
 
 
 
 
 
34b1e95
 
 
 
 
 
 
 
 
0f5112d
9792fe2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import gradio as gr
import json, os, re, traceback, contextlib, math, random
from typing import Any, List, Dict, Optional, Tuple

import spaces
import torch
from PIL import Image, ImageDraw
import requests
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize

# --- Configuration ---
MODEL_ID = "Hcompany/Holo1-3B"

# ---------------- Device / DType helpers ----------------

def pick_device() -> str:
    """
    On HF Spaces (ZeroGPU), CUDA is only available inside @spaces.GPU calls.
    We still honor FORCE_DEVICE for local testing.
    """
    forced = os.getenv("FORCE_DEVICE", "").lower().strip()
    if forced in {"cpu", "cuda", "mps"}:
        return forced
    if torch.cuda.is_available():
        return "cuda"
    if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available():
        return "mps"
    return "cpu"

def pick_dtype(device: str) -> torch.dtype:
    if device == "cuda":
        major, _ = torch.cuda.get_device_capability()
        return torch.bfloat16 if major >= 8 else torch.float16  # Ampere+ -> bf16
    if device == "mps":
        return torch.float16
    return torch.float32  # CPU

def move_to_device(batch, device: str):
    if isinstance(batch, dict):
        return {k: (v.to(device, non_blocking=True) if hasattr(v, "to") else v) for k, v in batch.items()}
    if hasattr(batch, "to"):
        return batch.to(device, non_blocking=True)
    return batch

# --- Chat/template helpers ---
def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
    tok = getattr(processor, "tokenizer", None)
    if hasattr(processor, "apply_chat_template"):
        return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    if tok is not None and hasattr(tok, "apply_chat_template"):
        return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    texts = []
    for m in messages:
        for c in m.get("content", []):
            if isinstance(c, dict) and c.get("type") == "text":
                texts.append(c.get("text", ""))
    return "\n".join(texts)

def batch_decode_compat(processor, token_id_batches, **kw):
    tok = getattr(processor, "tokenizer", None)
    if tok is not None and hasattr(tok, "batch_decode"):
        return tok.batch_decode(token_id_batches, **kw)
    if hasattr(processor, "batch_decode"):
        return processor.batch_decode(token_id_batches, **kw)
    raise AttributeError("No batch_decode available on processor or tokenizer.")

def get_image_proc_params(processor) -> Dict[str, int]:
    ip = getattr(processor, "image_processor", None)
    return {
        "patch_size": getattr(ip, "patch_size", 14),
        "merge_size": getattr(ip, "merge_size", 1),
        "min_pixels": getattr(ip, "min_pixels", 256 * 256),
        "max_pixels": getattr(ip, "max_pixels", 1280 * 1280),
    }

def trim_generated(generated_ids, inputs):
    in_ids = getattr(inputs, "input_ids", None)
    if in_ids is None and isinstance(inputs, dict):
        in_ids = inputs.get("input_ids", None)
    if in_ids is None:
        return [out_ids for out_ids in generated_ids]
    return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]

# --- Load model/processor ON CPU at import time (required for ZeroGPU) ---
print(f"Loading model and processor for {MODEL_ID} on CPU startup (ZeroGPU safe)...")
model = None
processor = None
model_loaded = False
load_error_message = ""

try:
    model = AutoModelForImageTextToText.from_pretrained(
        MODEL_ID,
        torch_dtype=torch.float32,  # CPU-safe dtype at import
        trust_remote_code=True,
    )
    processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
    model.eval()
    model_loaded = True
    print("Model and processor loaded on CPU.")
except Exception as e:
    load_error_message = (
        f"Error loading model/processor: {e}\n"
        "This might be due to network/model ID/library versions.\n"
        "Check the full traceback in the logs."
    )
    print(load_error_message)
    traceback.print_exc()

# --- Prompt builder ---
def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict]:
    guidelines: str = (
        "Localize an element on the GUI image according to my instructions and "
        "output a click position as Click(x, y) with x num pixels from the left edge "
        "and y num pixels from the top edge."
    )
    return [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": pil_image},
                {"type": "text", "text": f"{guidelines}\n{instruction}"}
            ],
        }
    ]

# --- Inference core (device passed in; AMP used when suitable) ---
@torch.inference_mode()
def run_inference_localization(
    messages_for_template: List[dict[str, Any]],
    pil_image_for_processing: Image.Image,
    device: str,
    dtype: torch.dtype,
    do_sample: bool = False,
    temperature: float = 0.6,
    top_p: float = 0.9,
    max_new_tokens: int = 128,
) -> str:
    text_prompt = apply_chat_template_compat(processor, messages_for_template)

    inputs = processor(
        text=[text_prompt],
        images=[pil_image_for_processing],
        padding=True,
        return_tensors="pt",
    )
    inputs = move_to_device(inputs, device)

    # AMP contexts
    if device == "cuda":
        amp_ctx = torch.autocast(device_type="cuda", dtype=dtype)
    elif device == "mps":
        amp_ctx = torch.autocast(device_type="mps", dtype=torch.float16)
    else:
        amp_ctx = contextlib.nullcontext()

    gen_kwargs = dict(
        max_new_tokens=max_new_tokens,
        do_sample=do_sample,
        temperature=temperature,
        top_p=top_p,
    )

    with amp_ctx:
        generated_ids = model.generate(**inputs, **gen_kwargs)

    generated_ids_trimmed = trim_generated(generated_ids, inputs)
    decoded_output = batch_decode_compat(
        processor,
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )
    return decoded_output[0] if decoded_output else ""

# ---------- Confidence helpers ----------
CLICK_RE = re.compile(r"Click\((\d+),\s*(\d+)\)")

def parse_click(s: str) -> Optional[Tuple[int, int]]:
    m = CLICK_RE.search(s)
    if not m:
        return None
    try:
        return int(m.group(1)), int(m.group(2))
    except Exception:
        return None

@torch.inference_mode()
def sample_clicks(
    messages: List[dict],
    img: Image.Image,
    device: str,
    dtype: torch.dtype,
    n_samples: int = 7,
    temperature: float = 0.6,
    top_p: float = 0.9,
    seed: Optional[int] = None,
) -> List[Optional[Tuple[int, int]]]:
    """
    Run multiple stochastic decodes to estimate self-consistency.
    Returns a list of (x,y) or None (if parsing failed) for each sample.
    """
    clicks: List[Optional[Tuple[int, int]]] = []
    # If model respects torch random, set seed for reproducibility (optional)
    if seed is not None:
        torch.manual_seed(seed)
        random.seed(seed)
    for i in range(n_samples):
        # Vary seed slightly each iteration to avoid identical sampling patterns
        if seed is not None:
            torch.manual_seed(seed + i + 1)
            random.seed((seed + i + 1) & 0xFFFFFFFF)
        out = run_inference_localization(
            messages, img, device, dtype,
            do_sample=True, temperature=temperature, top_p=top_p
        )
        clicks.append(parse_click(out))
    return clicks

def cluster_and_confidence(
    clicks: List[Optional[Tuple[int,int]]],
    img_w: int,
    img_h: int,
) -> Dict[str, Any]:
    """
    Simple robust consensus:
      - Keep only valid points
      - Compute median point (x_med, y_med)
      - Compute distances to median
      - Inlier threshold = max(8 px, 2% of min(img_w, img_h))
      - Confidence = (#inliers / #total_samples) * clamp(1 - (rms_inlier_dist / thr), 0, 1)
    Returns dict with consensus point, confidence, dispersion, and counts.
    """
    valid = [xy for xy in clicks if xy is not None]
    total = len(clicks)
    if total == 0:
        return dict(ok=False, reason="no_samples")

    if not valid:
        return dict(ok=False, reason="no_valid_points", total=total)

    xs = sorted([x for x, _ in valid])
    ys = sorted([y for _, y in valid])
    mid = len(valid) // 2
    if len(valid) % 2 == 1:
        x_med = xs[mid]
        y_med = ys[mid]
    else:
        x_med = (xs[mid - 1] + xs[mid]) // 2
        y_med = (ys[mid - 1] + ys[mid]) // 2

    thr = max(8.0, 0.02 * min(img_w, img_h))  # ~2% of smaller side, at least 8 px
    dists = [math.hypot(x - x_med, y - y_med) for (x, y) in valid]
    inliers = [(xy, d) for xy, d in zip(valid, dists) if d <= thr]
    outliers = [(xy, d) for xy, d in zip(valid, dists) if d > thr]
    inlier_count = len(inliers)

    # RMS of inlier distances (0 if perfect agreement)
    if inliers:
        rms = math.sqrt(sum(d*d for _, d in inliers) / len(inliers))
    else:
        rms = float("inf")

    # Confidence: agreement ratio * sharpness factor
    if inliers:
        sharp = max(0.0, min(1.0, 1.0 - (rms / thr)))
    else:
        sharp = 0.0
    confidence = (inlier_count / total) * sharp

    return dict(
        ok=True,
        x=x_med, y=y_med,
        confidence=confidence,
        total_samples=total,
        valid_samples=len(valid),
        inliers=inlier_count,
        outliers=len(outliers),
        sigma_px=rms if math.isfinite(rms) else None,
        inlier_threshold_px=thr,
        all_points=valid,
        inlier_points=[xy for xy,_ in inliers],
        outlier_points=[xy for xy,_ in outliers],
    )

def draw_samples(
    base_img: Image.Image,
    consensus_xy: Optional[Tuple[int,int]],
    inliers: List[Tuple[int,int]],
    outliers: List[Tuple[int,int]],
    ring_color: str = "red",
) -> Image.Image:
    """
    Overlay all sampled points: green=inliers, red=outliers, plus a ring for consensus.
    """
    img = base_img.copy().convert("RGB")
    draw = ImageDraw.Draw(img)
    w, h = img.size
    # Dot radius scales with image size
    r = max(3, min(w, h) // 200)

    # Draw inliers
    for (x, y) in inliers:
        draw.ellipse((x - r, y - r, x + r, y + r), fill="green", outline=None)

    # Draw outliers
    for (x, y) in outliers:
        draw.ellipse((x - r, y - r, x + r, y + r), fill="red", outline=None)

    # Consensus ring
    if consensus_xy is not None:
        cx, cy = consensus_xy
        ring_r = max(5, min(w, h) // 100, r * 3)
        draw.ellipse((cx - ring_r, cy - ring_r, cx + ring_r, cy + ring_r), outline=ring_color, width=max(2, ring_r // 4))
    return img

# --- Gradio processing function (ZeroGPU-visible) ---
# Decorate the function Gradio calls so Spaces detects a GPU entry point.
@spaces.GPU(duration=120)  # keep GPU attached briefly between calls (seconds)
def predict_click_location(
    input_pil_image: Image.Image,
    instruction: str,
    estimate_confidence: bool = True,
    num_samples: int = 7,
    temperature: float = 0.6,
    top_p: float = 0.9,
    seed: Optional[int] = None,
):
    if not model_loaded or not processor or not model:
        return f"Model not loaded. Error: {load_error_message}", None, "device: n/a | dtype: n/a"
    if not input_pil_image:
        return "No image provided. Please upload an image.", None, "device: n/a | dtype: n/a"
    if not instruction or instruction.strip() == "":
        return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB"), "device: n/a | dtype: n/a"

    # Decide device/dtype *inside* the GPU-decorated call
    device = pick_device()
    dtype = pick_dtype(device)

    # Optional perf knobs for CUDA
    if device == "cuda":
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.set_float32_matmul_precision("high")

    # If needed, move model now that GPU is available
    try:
        p = next(model.parameters())
        cur_dev = p.device.type
        cur_dtype = p.dtype
    except StopIteration:
        cur_dev, cur_dtype = "cpu", torch.float32

    if cur_dev != device or cur_dtype != dtype:
        model.to(device=device, dtype=dtype)
        model.eval()

    # 1) Resize according to image processor params (safe defaults if missing)
    try:
        ip = get_image_proc_params(processor)
        resized_height, resized_width = smart_resize(
            input_pil_image.height,
            input_pil_image.width,
            factor=ip["patch_size"] * ip["merge_size"],
            min_pixels=ip["min_pixels"],
            max_pixels=ip["max_pixels"],
        )
        resized_image = input_pil_image.resize(
            size=(resized_width, resized_height),
            resample=Image.Resampling.LANCZOS
        )
    except Exception as e:
        traceback.print_exc()
        return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB"), f"device: {device} | dtype: {dtype}"

    # 2) Build messages with image + instruction
    messages = get_localization_prompt(resized_image, instruction)

    # 3) Inference and (optionally) confidence estimation
    try:
        if estimate_confidence and num_samples >= 3:
            # Monte-Carlo sampling
            clicks = sample_clicks(
                messages, resized_image, device, dtype,
                n_samples=int(num_samples),
                temperature=float(temperature),
                top_p=float(top_p),
                seed=seed
            )
            summary = cluster_and_confidence(clicks, resized_image.width, resized_image.height)

            if not summary.get("ok", False):
                # Fallback: deterministic decode
                coord_str = run_inference_localization(messages, resized_image, device, dtype, do_sample=False)
                out_img = resized_image.copy().convert("RGB")
                match = CLICK_RE.search(coord_str or "")
                if match:
                    x, y = int(match.group(1)), int(match.group(2))
                    out_img = draw_samples(out_img, (x, y), [], [])
                coords_text = f"{coord_str} | confidence=0.00 (fallback)"
                return coords_text, out_img, f"device: {device} | dtype: {str(dtype).replace('torch.', '')}"

            # Build final string + visualization
            x, y = int(summary["x"]), int(summary["y"])
            conf = summary["confidence"]
            inliers = summary["inlier_points"]
            outliers = summary["outlier_points"]
            sigma = summary["sigma_px"]
            thr = summary["inlier_threshold_px"]
            total = summary["total_samples"]
            valid = summary["valid_samples"]

            # Compose output string in the same canonical format plus diagnostics
            coord_str = f"Click({x}, {y})"
            diag = (
                f"confidence={conf:.2f} | samples(valid/total)={valid}/{total} | "
                f"inliers={len(inliers)} | σ={sigma:.1f}px | thr={thr:.1f}px | "
                f"T={temperature:.2f}, p={top_p:.2f}"
            )

            # Draw: all samples + consensus ring
            out_img = draw_samples(resized_image, (x, y), inliers, outliers)
            return f"{coord_str} | {diag}", out_img, f"device: {device} | dtype: {str(dtype).replace('torch.', '')}"

        else:
            # Fast deterministic single pass (no confidence)
            coord_str = run_inference_localization(messages, resized_image, device, dtype, do_sample=False)
            out_img = resized_image.copy().convert("RGB")
            match = CLICK_RE.search(coord_str or "")
            if match:
                x = int(match.group(1))
                y = int(match.group(2))
                # draw a simple ring around the predicted point
                out_img = draw_samples(out_img, (x, y), [], [])
            else:
                print(f"Could not parse 'Click(x, y)' from model output: {coord_str}")
            return coord_str, out_img, f"device: {device} | dtype: {str(dtype).replace('torch.', '')}"

    except Exception as e:
        traceback.print_exc()
        return f"Error during model inference: {e}", resized_image.copy().convert("RGB"), f"device: {device} | dtype: {dtype}"

# --- Load Example Data ---
example_image = None
example_instruction = "Enter the server address readyforquantum.com to check its security"
try:
    example_image_url = "https://readyforquantum.com/img/screentest.jpg"
    example_image = Image.open(requests.get(example_image_url, stream=True).raw)
except Exception as e:
    print(f"Could not load example image from URL: {e}")
    traceback.print_exc()
    try:
        example_image = Image.new("RGB", (200, 150), color="lightgray")
        draw = ImageDraw.Draw(example_image)
        draw.text((10, 10), "Example image\nfailed to load", fill="black")
    except Exception:
        pass

# --- Gradio UI ---
title = "Holo1-3B: Holo1 Localization Demo (ZeroGPU-ready)"
article = f"""
<p style='text-align: center'>
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a><br/>
<small>GPU (if available) is requested only during inference via @spaces.GPU.</small>
</p>
"""

if not model_loaded:
    with gr.Blocks() as demo:
        gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
        gr.Markdown(f"<center>{load_error_message}</center>")
        gr.Markdown("<center>See logs for the full traceback.</center>")
else:
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
        gr.Markdown(article)

        with gr.Row():
            with gr.Column(scale=1):
                input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
                instruction_component = gr.Textbox(
                    label="Instruction",
                    placeholder="e.g., Click the 'Login' button",
                    info="Type the action you want the model to localize on the image."
                )
                estimate_conf = gr.Checkbox(value=True, label="Estimate confidence (slower)")
                num_samples_slider = gr.Slider(3, 15, value=7, step=1, label="Samples (for confidence)")
                temperature_slider = gr.Slider(0.2, 1.2, value=0.6, step=0.05, label="Temperature")
                top_p_slider = gr.Slider(0.5, 0.99, value=0.9, step=0.01, label="Top-p")
                seed_box = gr.Number(value=None, precision=0, label="Seed (optional, for reproducibility)")
                submit_button = gr.Button("Localize Click", variant="primary")

            with gr.Column(scale=1):
                output_coords_component = gr.Textbox(
                    label="Predicted Coordinates + Confidence",
                    interactive=False
                )
                output_image_component = gr.Image(
                    type="pil",
                    label="Image with Samples (green=inliers, red=outliers) and Final Ring",
                    height=400,
                    interactive=False
                )
                runtime_info = gr.Textbox(
                    label="Runtime Info",
                    value="device: n/a | dtype: n/a",
                    interactive=False
                )

        if example_image:
            gr.Examples(
                examples=[[example_image, example_instruction, True, 7, 0.6, 0.9, None]],
                inputs=[
                    input_image_component,
                    instruction_component,
                    estimate_conf,
                    num_samples_slider,
                    temperature_slider,
                    top_p_slider,
                    seed_box,
                ],
                outputs=[output_coords_component, output_image_component, runtime_info],
                fn=predict_click_location,
                cache_examples="lazy",
            )

        submit_button.click(
            fn=predict_click_location,
            inputs=[
                input_image_component,
                instruction_component,
                estimate_conf,
                num_samples_slider,
                temperature_slider,
                top_p_slider,
                seed_box,
            ],
            outputs=[output_coords_component, output_image_component, runtime_info]
        )

if __name__ == "__main__":
    demo.launch(debug=True)