File size: 20,778 Bytes
9792fe2 34b1e95 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 0f5112d 34b1e95 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 34b1e95 0f5112d 34b1e95 9792fe2 0f5112d 9792fe2 34b1e95 0f5112d 34b1e95 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 34b1e95 9792fe2 34b1e95 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 0f5112d 9792fe2 34b1e95 9792fe2 34b1e95 9792fe2 34b1e95 9792fe2 0f5112d 9792fe2 34b1e95 0f5112d 9792fe2 34b1e95 0f5112d 9792fe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import gradio as gr
import json, os, re, traceback, contextlib, math, random
from typing import Any, List, Dict, Optional, Tuple
import spaces
import torch
from PIL import Image, ImageDraw
import requests
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
# --- Configuration ---
MODEL_ID = "Hcompany/Holo1-3B"
# ---------------- Device / DType helpers ----------------
def pick_device() -> str:
"""
On HF Spaces (ZeroGPU), CUDA is only available inside @spaces.GPU calls.
We still honor FORCE_DEVICE for local testing.
"""
forced = os.getenv("FORCE_DEVICE", "").lower().strip()
if forced in {"cpu", "cuda", "mps"}:
return forced
if torch.cuda.is_available():
return "cuda"
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available():
return "mps"
return "cpu"
def pick_dtype(device: str) -> torch.dtype:
if device == "cuda":
major, _ = torch.cuda.get_device_capability()
return torch.bfloat16 if major >= 8 else torch.float16 # Ampere+ -> bf16
if device == "mps":
return torch.float16
return torch.float32 # CPU
def move_to_device(batch, device: str):
if isinstance(batch, dict):
return {k: (v.to(device, non_blocking=True) if hasattr(v, "to") else v) for k, v in batch.items()}
if hasattr(batch, "to"):
return batch.to(device, non_blocking=True)
return batch
# --- Chat/template helpers ---
def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
tok = getattr(processor, "tokenizer", None)
if hasattr(processor, "apply_chat_template"):
return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
if tok is not None and hasattr(tok, "apply_chat_template"):
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
texts = []
for m in messages:
for c in m.get("content", []):
if isinstance(c, dict) and c.get("type") == "text":
texts.append(c.get("text", ""))
return "\n".join(texts)
def batch_decode_compat(processor, token_id_batches, **kw):
tok = getattr(processor, "tokenizer", None)
if tok is not None and hasattr(tok, "batch_decode"):
return tok.batch_decode(token_id_batches, **kw)
if hasattr(processor, "batch_decode"):
return processor.batch_decode(token_id_batches, **kw)
raise AttributeError("No batch_decode available on processor or tokenizer.")
def get_image_proc_params(processor) -> Dict[str, int]:
ip = getattr(processor, "image_processor", None)
return {
"patch_size": getattr(ip, "patch_size", 14),
"merge_size": getattr(ip, "merge_size", 1),
"min_pixels": getattr(ip, "min_pixels", 256 * 256),
"max_pixels": getattr(ip, "max_pixels", 1280 * 1280),
}
def trim_generated(generated_ids, inputs):
in_ids = getattr(inputs, "input_ids", None)
if in_ids is None and isinstance(inputs, dict):
in_ids = inputs.get("input_ids", None)
if in_ids is None:
return [out_ids for out_ids in generated_ids]
return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]
# --- Load model/processor ON CPU at import time (required for ZeroGPU) ---
print(f"Loading model and processor for {MODEL_ID} on CPU startup (ZeroGPU safe)...")
model = None
processor = None
model_loaded = False
load_error_message = ""
try:
model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=torch.float32, # CPU-safe dtype at import
trust_remote_code=True,
)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model.eval()
model_loaded = True
print("Model and processor loaded on CPU.")
except Exception as e:
load_error_message = (
f"Error loading model/processor: {e}\n"
"This might be due to network/model ID/library versions.\n"
"Check the full traceback in the logs."
)
print(load_error_message)
traceback.print_exc()
# --- Prompt builder ---
def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict]:
guidelines: str = (
"Localize an element on the GUI image according to my instructions and "
"output a click position as Click(x, y) with x num pixels from the left edge "
"and y num pixels from the top edge."
)
return [
{
"role": "user",
"content": [
{"type": "image", "image": pil_image},
{"type": "text", "text": f"{guidelines}\n{instruction}"}
],
}
]
# --- Inference core (device passed in; AMP used when suitable) ---
@torch.inference_mode()
def run_inference_localization(
messages_for_template: List[dict[str, Any]],
pil_image_for_processing: Image.Image,
device: str,
dtype: torch.dtype,
do_sample: bool = False,
temperature: float = 0.6,
top_p: float = 0.9,
max_new_tokens: int = 128,
) -> str:
text_prompt = apply_chat_template_compat(processor, messages_for_template)
inputs = processor(
text=[text_prompt],
images=[pil_image_for_processing],
padding=True,
return_tensors="pt",
)
inputs = move_to_device(inputs, device)
# AMP contexts
if device == "cuda":
amp_ctx = torch.autocast(device_type="cuda", dtype=dtype)
elif device == "mps":
amp_ctx = torch.autocast(device_type="mps", dtype=torch.float16)
else:
amp_ctx = contextlib.nullcontext()
gen_kwargs = dict(
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
)
with amp_ctx:
generated_ids = model.generate(**inputs, **gen_kwargs)
generated_ids_trimmed = trim_generated(generated_ids, inputs)
decoded_output = batch_decode_compat(
processor,
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
return decoded_output[0] if decoded_output else ""
# ---------- Confidence helpers ----------
CLICK_RE = re.compile(r"Click\((\d+),\s*(\d+)\)")
def parse_click(s: str) -> Optional[Tuple[int, int]]:
m = CLICK_RE.search(s)
if not m:
return None
try:
return int(m.group(1)), int(m.group(2))
except Exception:
return None
@torch.inference_mode()
def sample_clicks(
messages: List[dict],
img: Image.Image,
device: str,
dtype: torch.dtype,
n_samples: int = 7,
temperature: float = 0.6,
top_p: float = 0.9,
seed: Optional[int] = None,
) -> List[Optional[Tuple[int, int]]]:
"""
Run multiple stochastic decodes to estimate self-consistency.
Returns a list of (x,y) or None (if parsing failed) for each sample.
"""
clicks: List[Optional[Tuple[int, int]]] = []
# If model respects torch random, set seed for reproducibility (optional)
if seed is not None:
torch.manual_seed(seed)
random.seed(seed)
for i in range(n_samples):
# Vary seed slightly each iteration to avoid identical sampling patterns
if seed is not None:
torch.manual_seed(seed + i + 1)
random.seed((seed + i + 1) & 0xFFFFFFFF)
out = run_inference_localization(
messages, img, device, dtype,
do_sample=True, temperature=temperature, top_p=top_p
)
clicks.append(parse_click(out))
return clicks
def cluster_and_confidence(
clicks: List[Optional[Tuple[int,int]]],
img_w: int,
img_h: int,
) -> Dict[str, Any]:
"""
Simple robust consensus:
- Keep only valid points
- Compute median point (x_med, y_med)
- Compute distances to median
- Inlier threshold = max(8 px, 2% of min(img_w, img_h))
- Confidence = (#inliers / #total_samples) * clamp(1 - (rms_inlier_dist / thr), 0, 1)
Returns dict with consensus point, confidence, dispersion, and counts.
"""
valid = [xy for xy in clicks if xy is not None]
total = len(clicks)
if total == 0:
return dict(ok=False, reason="no_samples")
if not valid:
return dict(ok=False, reason="no_valid_points", total=total)
xs = sorted([x for x, _ in valid])
ys = sorted([y for _, y in valid])
mid = len(valid) // 2
if len(valid) % 2 == 1:
x_med = xs[mid]
y_med = ys[mid]
else:
x_med = (xs[mid - 1] + xs[mid]) // 2
y_med = (ys[mid - 1] + ys[mid]) // 2
thr = max(8.0, 0.02 * min(img_w, img_h)) # ~2% of smaller side, at least 8 px
dists = [math.hypot(x - x_med, y - y_med) for (x, y) in valid]
inliers = [(xy, d) for xy, d in zip(valid, dists) if d <= thr]
outliers = [(xy, d) for xy, d in zip(valid, dists) if d > thr]
inlier_count = len(inliers)
# RMS of inlier distances (0 if perfect agreement)
if inliers:
rms = math.sqrt(sum(d*d for _, d in inliers) / len(inliers))
else:
rms = float("inf")
# Confidence: agreement ratio * sharpness factor
if inliers:
sharp = max(0.0, min(1.0, 1.0 - (rms / thr)))
else:
sharp = 0.0
confidence = (inlier_count / total) * sharp
return dict(
ok=True,
x=x_med, y=y_med,
confidence=confidence,
total_samples=total,
valid_samples=len(valid),
inliers=inlier_count,
outliers=len(outliers),
sigma_px=rms if math.isfinite(rms) else None,
inlier_threshold_px=thr,
all_points=valid,
inlier_points=[xy for xy,_ in inliers],
outlier_points=[xy for xy,_ in outliers],
)
def draw_samples(
base_img: Image.Image,
consensus_xy: Optional[Tuple[int,int]],
inliers: List[Tuple[int,int]],
outliers: List[Tuple[int,int]],
ring_color: str = "red",
) -> Image.Image:
"""
Overlay all sampled points: green=inliers, red=outliers, plus a ring for consensus.
"""
img = base_img.copy().convert("RGB")
draw = ImageDraw.Draw(img)
w, h = img.size
# Dot radius scales with image size
r = max(3, min(w, h) // 200)
# Draw inliers
for (x, y) in inliers:
draw.ellipse((x - r, y - r, x + r, y + r), fill="green", outline=None)
# Draw outliers
for (x, y) in outliers:
draw.ellipse((x - r, y - r, x + r, y + r), fill="red", outline=None)
# Consensus ring
if consensus_xy is not None:
cx, cy = consensus_xy
ring_r = max(5, min(w, h) // 100, r * 3)
draw.ellipse((cx - ring_r, cy - ring_r, cx + ring_r, cy + ring_r), outline=ring_color, width=max(2, ring_r // 4))
return img
# --- Gradio processing function (ZeroGPU-visible) ---
# Decorate the function Gradio calls so Spaces detects a GPU entry point.
@spaces.GPU(duration=120) # keep GPU attached briefly between calls (seconds)
def predict_click_location(
input_pil_image: Image.Image,
instruction: str,
estimate_confidence: bool = True,
num_samples: int = 7,
temperature: float = 0.6,
top_p: float = 0.9,
seed: Optional[int] = None,
):
if not model_loaded or not processor or not model:
return f"Model not loaded. Error: {load_error_message}", None, "device: n/a | dtype: n/a"
if not input_pil_image:
return "No image provided. Please upload an image.", None, "device: n/a | dtype: n/a"
if not instruction or instruction.strip() == "":
return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB"), "device: n/a | dtype: n/a"
# Decide device/dtype *inside* the GPU-decorated call
device = pick_device()
dtype = pick_dtype(device)
# Optional perf knobs for CUDA
if device == "cuda":
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_float32_matmul_precision("high")
# If needed, move model now that GPU is available
try:
p = next(model.parameters())
cur_dev = p.device.type
cur_dtype = p.dtype
except StopIteration:
cur_dev, cur_dtype = "cpu", torch.float32
if cur_dev != device or cur_dtype != dtype:
model.to(device=device, dtype=dtype)
model.eval()
# 1) Resize according to image processor params (safe defaults if missing)
try:
ip = get_image_proc_params(processor)
resized_height, resized_width = smart_resize(
input_pil_image.height,
input_pil_image.width,
factor=ip["patch_size"] * ip["merge_size"],
min_pixels=ip["min_pixels"],
max_pixels=ip["max_pixels"],
)
resized_image = input_pil_image.resize(
size=(resized_width, resized_height),
resample=Image.Resampling.LANCZOS
)
except Exception as e:
traceback.print_exc()
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB"), f"device: {device} | dtype: {dtype}"
# 2) Build messages with image + instruction
messages = get_localization_prompt(resized_image, instruction)
# 3) Inference and (optionally) confidence estimation
try:
if estimate_confidence and num_samples >= 3:
# Monte-Carlo sampling
clicks = sample_clicks(
messages, resized_image, device, dtype,
n_samples=int(num_samples),
temperature=float(temperature),
top_p=float(top_p),
seed=seed
)
summary = cluster_and_confidence(clicks, resized_image.width, resized_image.height)
if not summary.get("ok", False):
# Fallback: deterministic decode
coord_str = run_inference_localization(messages, resized_image, device, dtype, do_sample=False)
out_img = resized_image.copy().convert("RGB")
match = CLICK_RE.search(coord_str or "")
if match:
x, y = int(match.group(1)), int(match.group(2))
out_img = draw_samples(out_img, (x, y), [], [])
coords_text = f"{coord_str} | confidence=0.00 (fallback)"
return coords_text, out_img, f"device: {device} | dtype: {str(dtype).replace('torch.', '')}"
# Build final string + visualization
x, y = int(summary["x"]), int(summary["y"])
conf = summary["confidence"]
inliers = summary["inlier_points"]
outliers = summary["outlier_points"]
sigma = summary["sigma_px"]
thr = summary["inlier_threshold_px"]
total = summary["total_samples"]
valid = summary["valid_samples"]
# Compose output string in the same canonical format plus diagnostics
coord_str = f"Click({x}, {y})"
diag = (
f"confidence={conf:.2f} | samples(valid/total)={valid}/{total} | "
f"inliers={len(inliers)} | σ={sigma:.1f}px | thr={thr:.1f}px | "
f"T={temperature:.2f}, p={top_p:.2f}"
)
# Draw: all samples + consensus ring
out_img = draw_samples(resized_image, (x, y), inliers, outliers)
return f"{coord_str} | {diag}", out_img, f"device: {device} | dtype: {str(dtype).replace('torch.', '')}"
else:
# Fast deterministic single pass (no confidence)
coord_str = run_inference_localization(messages, resized_image, device, dtype, do_sample=False)
out_img = resized_image.copy().convert("RGB")
match = CLICK_RE.search(coord_str or "")
if match:
x = int(match.group(1))
y = int(match.group(2))
# draw a simple ring around the predicted point
out_img = draw_samples(out_img, (x, y), [], [])
else:
print(f"Could not parse 'Click(x, y)' from model output: {coord_str}")
return coord_str, out_img, f"device: {device} | dtype: {str(dtype).replace('torch.', '')}"
except Exception as e:
traceback.print_exc()
return f"Error during model inference: {e}", resized_image.copy().convert("RGB"), f"device: {device} | dtype: {dtype}"
# --- Load Example Data ---
example_image = None
example_instruction = "Enter the server address readyforquantum.com to check its security"
try:
example_image_url = "https://readyforquantum.com/img/screentest.jpg"
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
except Exception as e:
print(f"Could not load example image from URL: {e}")
traceback.print_exc()
try:
example_image = Image.new("RGB", (200, 150), color="lightgray")
draw = ImageDraw.Draw(example_image)
draw.text((10, 10), "Example image\nfailed to load", fill="black")
except Exception:
pass
# --- Gradio UI ---
title = "Holo1-3B: Holo1 Localization Demo (ZeroGPU-ready)"
article = f"""
<p style='text-align: center'>
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a><br/>
<small>GPU (if available) is requested only during inference via @spaces.GPU.</small>
</p>
"""
if not model_loaded:
with gr.Blocks() as demo:
gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
gr.Markdown(f"<center>{load_error_message}</center>")
gr.Markdown("<center>See logs for the full traceback.</center>")
else:
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=1):
input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
instruction_component = gr.Textbox(
label="Instruction",
placeholder="e.g., Click the 'Login' button",
info="Type the action you want the model to localize on the image."
)
estimate_conf = gr.Checkbox(value=True, label="Estimate confidence (slower)")
num_samples_slider = gr.Slider(3, 15, value=7, step=1, label="Samples (for confidence)")
temperature_slider = gr.Slider(0.2, 1.2, value=0.6, step=0.05, label="Temperature")
top_p_slider = gr.Slider(0.5, 0.99, value=0.9, step=0.01, label="Top-p")
seed_box = gr.Number(value=None, precision=0, label="Seed (optional, for reproducibility)")
submit_button = gr.Button("Localize Click", variant="primary")
with gr.Column(scale=1):
output_coords_component = gr.Textbox(
label="Predicted Coordinates + Confidence",
interactive=False
)
output_image_component = gr.Image(
type="pil",
label="Image with Samples (green=inliers, red=outliers) and Final Ring",
height=400,
interactive=False
)
runtime_info = gr.Textbox(
label="Runtime Info",
value="device: n/a | dtype: n/a",
interactive=False
)
if example_image:
gr.Examples(
examples=[[example_image, example_instruction, True, 7, 0.6, 0.9, None]],
inputs=[
input_image_component,
instruction_component,
estimate_conf,
num_samples_slider,
temperature_slider,
top_p_slider,
seed_box,
],
outputs=[output_coords_component, output_image_component, runtime_info],
fn=predict_click_location,
cache_examples="lazy",
)
submit_button.click(
fn=predict_click_location,
inputs=[
input_image_component,
instruction_component,
estimate_conf,
num_samples_slider,
temperature_slider,
top_p_slider,
seed_box,
],
outputs=[output_coords_component, output_image_component, runtime_info]
)
if __name__ == "__main__":
demo.launch(debug=True)
|