Spaces:
Runtime error
Runtime error
File size: 4,428 Bytes
62be6ed ff3e8f4 62be6ed ff3e8f4 62be6ed 621ed57 16dfb59 621ed57 ff3e8f4 be08ea0 621ed57 ff3e8f4 621ed57 ff3e8f4 621ed57 ff3e8f4 621ed57 ff3e8f4 621ed57 16dfb59 621ed57 ff3e8f4 621ed57 ff3e8f4 621ed57 ff3e8f4 621ed57 ff3e8f4 621ed57 ff3e8f4 621ed57 ff3e8f4 621ed57 ff3e8f4 621ed57 ff3e8f4 621ed57 16dfb59 621ed57 ff3e8f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
# ---- Hub download settings (apply before any HF imports) ----
os.environ["HF_HUB_ENABLE_XET"] = "0"
os.environ["HF_HUB_DISABLE_XET"] = "1"
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["HF_HUB_ENABLE_RESUME"] = "1"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
import gradio as gr
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
from PIL import Image
# Use the compact HF-format LLaVA model
MODEL_ID = "xtuner/llava-phi-3-mini-hf"
# Device + dtype
if torch.cuda.is_available():
TORCH_DTYPE = torch.float16
else:
TORCH_DTYPE = torch.float32
def load_model():
"""
Load the LLaVA model and its processor.
"""
model = LlavaForConditionalGeneration.from_pretrained(
MODEL_ID,
torch_dtype=TORCH_DTYPE,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
# ---- Robustness: ensure processor carries vision attrs expected by LLaVA ----
vcfg = getattr(model.config, "vision_config", None)
if not hasattr(processor, "patch_size") or processor.patch_size is None:
# CLIP-L/336 typically uses patch_size=14; default to 14 if missing
processor.patch_size = getattr(vcfg, "patch_size", 14)
if (
not hasattr(processor, "vision_feature_select_strategy")
or processor.vision_feature_select_strategy is None
):
processor.vision_feature_select_strategy = getattr(
model.config, "vision_feature_select_strategy", "default"
)
if (
not hasattr(processor, "num_additional_image_tokens")
or processor.num_additional_image_tokens is None
):
# CLIP ViT uses a single CLS token
processor.num_additional_image_tokens = 1
return model, processor
# Load once at import
MODEL, PROCESSOR = load_model()
def answer_question(image: Image.Image, question: str) -> str:
"""
Generate an answer about the uploaded image.
"""
if image is None:
return "Please upload an image."
if not question or not question.strip():
return "Please enter a question about the image."
try:
# ---- Preferred: chat-template path (handles image + text cleanly) ----
conversation = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": question.strip()},
],
}]
inputs = PROCESSOR.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
images=[image],
)
except Exception:
# ---- Fallback: legacy prompt with <image> placeholder ----
prompt = f"USER: <image>\n{question.strip()} ASSISTANT:"
inputs = PROCESSOR(
images=image,
text=prompt,
return_tensors="pt",
)
# Move all tensors to the model's device
inputs = {k: (v.to(MODEL.device) if hasattr(v, "to") else v) for k, v in inputs.items()}
with torch.inference_mode():
generated_ids = MODEL.generate(
**inputs,
max_new_tokens=256,
do_sample=False,
)
text = PROCESSOR.batch_decode(
generated_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)[0]
return text.strip()
def build_interface() -> gr.Interface:
description = (
"Upload an image and ask a question about it.\n\n"
"This demo uses **xtuner/llava-phi-3-mini-hf** (LLaVA in HF format) "
"to perform visual question answering. Note: a GPU is recommended; "
"CPU inference will be slow."
)
return gr.Interface(
fn=answer_question,
inputs=[
gr.Image(type="pil", label="Image"),
gr.Textbox(
label="Question",
placeholder="Describe or ask something about the image",
lines=1,
),
],
outputs=gr.Textbox(label="Answer"),
title="Visual Question Answering (LLaVA Phi-3 Mini)",
description=description,
flagging_mode="never",
)
def main() -> None:
iface = build_interface()
iface.launch()
if __name__ == "__main__":
main()
|