Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,84 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import time
|
4 |
-
import os
|
5 |
-
import torch
|
6 |
-
from pathlib import Path
|
7 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
import json
|
9 |
import uuid
|
10 |
import edge_tts
|
11 |
import asyncio
|
12 |
import aiofiles
|
|
|
|
|
13 |
import mimetypes
|
14 |
-
|
15 |
-
|
16 |
-
from
|
17 |
-
from pydub import AudioSegment
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
-
print(f"Using device: {device}")
|
25 |
|
26 |
-
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
28 |
model = AutoModelForCausalLM.from_pretrained(
|
29 |
-
|
30 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
31 |
-
|
|
|
32 |
|
33 |
-
# Constants
|
34 |
-
MAX_FILE_SIZE_MB = 20
|
35 |
-
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024
|
36 |
|
37 |
class PodcastGenerator:
|
38 |
def __init__(self):
|
39 |
pass
|
40 |
|
41 |
-
async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None):
|
42 |
example = """
|
43 |
{
|
44 |
"topic": "AGI",
|
45 |
"podcast": [
|
46 |
-
{
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
{
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
]
|
55 |
}
|
56 |
"""
|
|
|
57 |
if language == "Auto Detect":
|
58 |
language_instruction = "- The podcast MUST be in the same language as the user input."
|
59 |
else:
|
@@ -71,7 +96,7 @@ You are a professional podcast generator. Your task is to generate a professiona
|
|
71 |
Follow this example structure:
|
72 |
{example}
|
73 |
"""
|
74 |
-
#
|
75 |
if prompt and file_obj:
|
76 |
user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
|
77 |
elif prompt:
|
@@ -79,114 +104,186 @@ Follow this example structure:
|
|
79 |
else:
|
80 |
user_prompt = "Please generate a podcast script based on the uploaded file."
|
81 |
|
82 |
-
#
|
83 |
if file_obj:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
97 |
try:
|
98 |
if progress:
|
99 |
progress(0.3, "Generating podcast script...")
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
do_sample=True,
|
106 |
-
temperature=1.0
|
107 |
-
)
|
108 |
-
return tokenizer.decode(outs[0], skip_special_tokens=True)
|
109 |
-
generated_text = await asyncio.wait_for(
|
110 |
-
asyncio.to_thread(hf_generate, prompt_text),
|
111 |
-
timeout=60
|
112 |
-
)
|
113 |
-
except asyncio.TimeoutError:
|
114 |
-
raise Exception("The script generation request timed out. Please try again later.")
|
115 |
except Exception as e:
|
116 |
raise Exception(f"Failed to generate podcast script: {e}")
|
117 |
|
|
|
|
|
118 |
if progress:
|
119 |
progress(0.4, "Script generated successfully!")
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
|
124 |
voice = speaker1 if speaker == 1 else speaker2
|
125 |
speech = edge_tts.Communicate(text, voice)
|
|
|
126 |
temp_filename = f"temp_{uuid.uuid4()}.wav"
|
127 |
try:
|
128 |
-
|
|
|
129 |
return temp_filename
|
130 |
except asyncio.TimeoutError:
|
131 |
-
if os.path.exists(temp_filename):
|
|
|
132 |
raise Exception("Text-to-speech generation timed out. Please try with a shorter text.")
|
133 |
except Exception as e:
|
134 |
-
if os.path.exists(temp_filename):
|
|
|
135 |
raise e
|
136 |
|
137 |
async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
|
138 |
-
if progress:
|
|
|
|
|
139 |
combined_audio = AudioSegment.empty()
|
140 |
for audio_file in audio_files:
|
141 |
combined_audio += AudioSegment.from_file(audio_file)
|
142 |
-
os.remove(audio_file)
|
|
|
143 |
output_filename = f"output_{uuid.uuid4()}.wav"
|
144 |
combined_audio.export(output_filename, format="wav")
|
145 |
-
|
|
|
|
|
|
|
146 |
return output_filename
|
147 |
|
148 |
async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
|
149 |
try:
|
150 |
-
if progress:
|
|
|
|
|
|
|
151 |
return await asyncio.wait_for(
|
152 |
self._generate_podcast_internal(input_text, language, speaker1, speaker2, api_key, file_obj, progress),
|
153 |
-
timeout=600
|
154 |
)
|
155 |
except asyncio.TimeoutError:
|
156 |
raise Exception("The podcast generation process timed out. Please try with shorter text or try again later.")
|
157 |
except Exception as e:
|
158 |
raise Exception(f"Error generating podcast: {str(e)}")
|
159 |
-
|
160 |
async def _generate_podcast_internal(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
|
161 |
-
if progress:
|
|
|
|
|
162 |
podcast_json = await self.generate_script(input_text, language, api_key, file_obj, progress)
|
163 |
-
|
|
|
|
|
|
|
|
|
164 |
audio_files = []
|
165 |
total_lines = len(podcast_json['podcast'])
|
166 |
-
|
|
|
|
|
|
|
|
|
167 |
for batch_start in range(0, total_lines, batch_size):
|
168 |
batch_end = min(batch_start + batch_size, total_lines)
|
169 |
batch = podcast_json['podcast'][batch_start:batch_end]
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
try:
|
|
|
172 |
batch_results = await asyncio.gather(*tts_tasks, return_exceptions=True)
|
173 |
-
|
|
|
|
|
174 |
if isinstance(result, Exception):
|
|
|
175 |
for file in audio_files:
|
176 |
-
if os.path.exists(file):
|
|
|
177 |
raise Exception(f"Error generating speech: {str(result)}")
|
178 |
-
|
|
|
|
|
|
|
179 |
if progress:
|
180 |
-
|
|
|
|
|
181 |
except Exception as e:
|
|
|
182 |
for file in audio_files:
|
183 |
-
if os.path.exists(file):
|
|
|
184 |
raise Exception(f"Error in batch TTS generation: {str(e)}")
|
185 |
-
|
186 |
-
|
|
|
187 |
|
188 |
async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, api_key: str = "", progress=None) -> str:
|
189 |
start_time = time.time()
|
|
|
190 |
voice_names = {
|
191 |
"Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
|
192 |
"Ava - English (United States)": "en-US-AvaMultilingualNeural",
|
@@ -197,44 +294,124 @@ async def process_input(input_text: str, input_file, language: str, speaker1: st
|
|
197 |
"Remy - French (France)": "fr-FR-RemyMultilingualNeural",
|
198 |
"Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
|
199 |
}
|
|
|
200 |
speaker1 = voice_names[speaker1]
|
201 |
speaker2 = voice_names[speaker2]
|
|
|
202 |
try:
|
203 |
-
if progress:
|
|
|
|
|
204 |
if not api_key:
|
205 |
-
api_key = "
|
206 |
if not api_key:
|
207 |
raise Exception("No API key provided. Please provide a Gemini API key.")
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
213 |
except Exception as e:
|
214 |
-
|
215 |
-
|
|
|
216 |
raise Exception("Rate limit exceeded. Please try again later or use your own API key.")
|
217 |
-
elif "timeout" in
|
218 |
-
raise Exception("The request timed out
|
219 |
else:
|
220 |
-
raise Exception(f"Error: {
|
|
|
221 |
# Gradio UI
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from pydub import AudioSegment
|
|
|
|
|
|
|
|
|
|
|
3 |
import json
|
4 |
import uuid
|
5 |
import edge_tts
|
6 |
import asyncio
|
7 |
import aiofiles
|
8 |
+
import os
|
9 |
+
import time
|
10 |
import mimetypes
|
11 |
+
import torch
|
12 |
+
from typing import List, Dict
|
13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
14 |
|
15 |
+
# Constants
|
16 |
+
MAX_FILE_SIZE_MB = 20
|
17 |
+
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
|
18 |
|
19 |
+
MODEL_ID = "HuggingFaceH4/zephyr-7b-alpha"
|
|
|
|
|
20 |
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
MODEL_ID,
|
24 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
25 |
+
device_map="auto"
|
26 |
+
).eval()
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
class PodcastGenerator:
|
30 |
def __init__(self):
|
31 |
pass
|
32 |
|
33 |
+
async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None) -> Dict:
|
34 |
example = """
|
35 |
{
|
36 |
"topic": "AGI",
|
37 |
"podcast": [
|
38 |
+
{
|
39 |
+
"speaker": 2,
|
40 |
+
"line": "So, AGI, huh? Seems like everyone's talking about it these days."
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"speaker": 1,
|
44 |
+
"line": "Yeah, it's definitely having a moment, isn't it?"
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"speaker": 2,
|
48 |
+
"line": "It is and for good reason, right? I mean, you've been digging into this stuff, listening to the podcasts and everything. What really stood out to you? What got you hooked?"
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"speaker": 1,
|
52 |
+
"line": "I like that. It really is."
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"speaker": 2,
|
56 |
+
"line": "And honestly, that's a responsibility that extends beyond just the researchers and the policymakers."
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"speaker": 1,
|
60 |
+
"line": "100%"
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"speaker": 2,
|
64 |
+
"line": "So to everyone listening out there I'll leave you with this. As AGI continues to develop, what role do you want to play in shaping its future?"
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"speaker": 1,
|
68 |
+
"line": "That's a question worth pondering."
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"speaker": 2,
|
72 |
+
"line": "It certainly is and on that note, we'll wrap up this deep dive. Thanks for listening, everyone."
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"speaker": 1,
|
76 |
+
"line": "Peace."
|
77 |
+
}
|
78 |
]
|
79 |
}
|
80 |
"""
|
81 |
+
|
82 |
if language == "Auto Detect":
|
83 |
language_instruction = "- The podcast MUST be in the same language as the user input."
|
84 |
else:
|
|
|
96 |
Follow this example structure:
|
97 |
{example}
|
98 |
"""
|
99 |
+
# Construct system and user prompt
|
100 |
if prompt and file_obj:
|
101 |
user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
|
102 |
elif prompt:
|
|
|
104 |
else:
|
105 |
user_prompt = "Please generate a podcast script based on the uploaded file."
|
106 |
|
107 |
+
# NOTE: file_obj cannot be passed to a text-only LLM
|
108 |
if file_obj:
|
109 |
+
print("Warning: Uploaded file is ignored in this version because external LLM does not support file input.")
|
110 |
+
|
111 |
+
# Build prompt
|
112 |
+
full_prompt = f"""{system_prompt}
|
113 |
+
|
114 |
+
{user_prompt}
|
115 |
+
|
116 |
+
Return the result strictly as a JSON object in the format:
|
117 |
+
{{
|
118 |
+
"topic": "{prompt}",
|
119 |
+
"podcast": [
|
120 |
+
{{ "speaker": 1, "line": "..." }},
|
121 |
+
{{ "speaker": 2, "line": "..." }}
|
122 |
+
]
|
123 |
+
}}
|
124 |
+
"""
|
125 |
+
|
126 |
try:
|
127 |
if progress:
|
128 |
progress(0.3, "Generating podcast script...")
|
129 |
+
|
130 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
131 |
+
output = model.generate(**inputs, max_new_tokens=1024)
|
132 |
+
text = tokenizer.decode(output[0], skip_special_tokens=True)
|
133 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
except Exception as e:
|
135 |
raise Exception(f"Failed to generate podcast script: {e}")
|
136 |
|
137 |
+
print(f"Generated podcast script:\n{text}")
|
138 |
+
|
139 |
if progress:
|
140 |
progress(0.4, "Script generated successfully!")
|
141 |
|
142 |
+
try:
|
143 |
+
return json.loads(text)
|
144 |
+
except json.JSONDecodeError:
|
145 |
+
raise Exception("The model did not return valid JSON. Please refine the prompt.")
|
146 |
+
|
147 |
+
|
148 |
+
async def _read_file_bytes(self, file_obj) -> bytes:
|
149 |
+
"""Read file bytes from a file object"""
|
150 |
+
# Check file size before reading
|
151 |
+
if hasattr(file_obj, 'size'):
|
152 |
+
file_size = file_obj.size
|
153 |
+
else:
|
154 |
+
file_size = os.path.getsize(file_obj.name)
|
155 |
+
|
156 |
+
if file_size > MAX_FILE_SIZE_BYTES:
|
157 |
+
raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
|
158 |
+
|
159 |
+
if hasattr(file_obj, 'read'):
|
160 |
+
return file_obj.read()
|
161 |
+
else:
|
162 |
+
async with aiofiles.open(file_obj.name, 'rb') as f:
|
163 |
+
return await f.read()
|
164 |
+
|
165 |
+
def _get_mime_type(self, filename: str) -> str:
|
166 |
+
"""Determine MIME type based on file extension"""
|
167 |
+
ext = os.path.splitext(filename)[1].lower()
|
168 |
+
if ext == '.pdf':
|
169 |
+
return "application/pdf"
|
170 |
+
elif ext == '.txt':
|
171 |
+
return "text/plain"
|
172 |
+
else:
|
173 |
+
# Fallback to the default mime type detector
|
174 |
+
mime_type, _ = mimetypes.guess_type(filename)
|
175 |
+
return mime_type or "application/octet-stream"
|
176 |
|
177 |
async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
|
178 |
voice = speaker1 if speaker == 1 else speaker2
|
179 |
speech = edge_tts.Communicate(text, voice)
|
180 |
+
|
181 |
temp_filename = f"temp_{uuid.uuid4()}.wav"
|
182 |
try:
|
183 |
+
# Add timeout to TTS generation
|
184 |
+
await asyncio.wait_for(speech.save(temp_filename), timeout=30) # 30 seconds timeout
|
185 |
return temp_filename
|
186 |
except asyncio.TimeoutError:
|
187 |
+
if os.path.exists(temp_filename):
|
188 |
+
os.remove(temp_filename)
|
189 |
raise Exception("Text-to-speech generation timed out. Please try with a shorter text.")
|
190 |
except Exception as e:
|
191 |
+
if os.path.exists(temp_filename):
|
192 |
+
os.remove(temp_filename)
|
193 |
raise e
|
194 |
|
195 |
async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
|
196 |
+
if progress:
|
197 |
+
progress(0.9, "Combining audio files...")
|
198 |
+
|
199 |
combined_audio = AudioSegment.empty()
|
200 |
for audio_file in audio_files:
|
201 |
combined_audio += AudioSegment.from_file(audio_file)
|
202 |
+
os.remove(audio_file) # Clean up temporary files
|
203 |
+
|
204 |
output_filename = f"output_{uuid.uuid4()}.wav"
|
205 |
combined_audio.export(output_filename, format="wav")
|
206 |
+
|
207 |
+
if progress:
|
208 |
+
progress(1.0, "Podcast generated successfully!")
|
209 |
+
|
210 |
return output_filename
|
211 |
|
212 |
async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
|
213 |
try:
|
214 |
+
if progress:
|
215 |
+
progress(0.1, "Starting podcast generation...")
|
216 |
+
|
217 |
+
# Set overall timeout for the entire process
|
218 |
return await asyncio.wait_for(
|
219 |
self._generate_podcast_internal(input_text, language, speaker1, speaker2, api_key, file_obj, progress),
|
220 |
+
timeout=600 # 10 minutes total timeout
|
221 |
)
|
222 |
except asyncio.TimeoutError:
|
223 |
raise Exception("The podcast generation process timed out. Please try with shorter text or try again later.")
|
224 |
except Exception as e:
|
225 |
raise Exception(f"Error generating podcast: {str(e)}")
|
226 |
+
|
227 |
async def _generate_podcast_internal(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
|
228 |
+
if progress:
|
229 |
+
progress(0.2, "Generating podcast script...")
|
230 |
+
|
231 |
podcast_json = await self.generate_script(input_text, language, api_key, file_obj, progress)
|
232 |
+
|
233 |
+
if progress:
|
234 |
+
progress(0.5, "Converting text to speech...")
|
235 |
+
|
236 |
+
# Process TTS in batches for concurrent processing
|
237 |
audio_files = []
|
238 |
total_lines = len(podcast_json['podcast'])
|
239 |
+
|
240 |
+
# Define batch size to control concurrency
|
241 |
+
batch_size = 10 # Adjust based on system resources
|
242 |
+
|
243 |
+
# Process in batches
|
244 |
for batch_start in range(0, total_lines, batch_size):
|
245 |
batch_end = min(batch_start + batch_size, total_lines)
|
246 |
batch = podcast_json['podcast'][batch_start:batch_end]
|
247 |
+
|
248 |
+
# Create tasks for concurrent processing
|
249 |
+
tts_tasks = []
|
250 |
+
for item in batch:
|
251 |
+
tts_task = self.tts_generate(item['line'], item['speaker'], speaker1, speaker2)
|
252 |
+
tts_tasks.append(tts_task)
|
253 |
+
|
254 |
try:
|
255 |
+
# Process batch concurrently
|
256 |
batch_results = await asyncio.gather(*tts_tasks, return_exceptions=True)
|
257 |
+
|
258 |
+
# Check for exceptions and handle results
|
259 |
+
for i, result in enumerate(batch_results):
|
260 |
if isinstance(result, Exception):
|
261 |
+
# Clean up any files already created
|
262 |
for file in audio_files:
|
263 |
+
if os.path.exists(file):
|
264 |
+
os.remove(file)
|
265 |
raise Exception(f"Error generating speech: {str(result)}")
|
266 |
+
else:
|
267 |
+
audio_files.append(result)
|
268 |
+
|
269 |
+
# Update progress
|
270 |
if progress:
|
271 |
+
current_progress = 0.5 + (0.4 * (batch_end / total_lines))
|
272 |
+
progress(current_progress, f"Processed {batch_end}/{total_lines} speech segments...")
|
273 |
+
|
274 |
except Exception as e:
|
275 |
+
# Clean up any files already created
|
276 |
for file in audio_files:
|
277 |
+
if os.path.exists(file):
|
278 |
+
os.remove(file)
|
279 |
raise Exception(f"Error in batch TTS generation: {str(e)}")
|
280 |
+
|
281 |
+
combined_audio = await self.combine_audio_files(audio_files, progress)
|
282 |
+
return combined_audio
|
283 |
|
284 |
async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, api_key: str = "", progress=None) -> str:
|
285 |
start_time = time.time()
|
286 |
+
|
287 |
voice_names = {
|
288 |
"Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
|
289 |
"Ava - English (United States)": "en-US-AvaMultilingualNeural",
|
|
|
294 |
"Remy - French (France)": "fr-FR-RemyMultilingualNeural",
|
295 |
"Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
|
296 |
}
|
297 |
+
|
298 |
speaker1 = voice_names[speaker1]
|
299 |
speaker2 = voice_names[speaker2]
|
300 |
+
|
301 |
try:
|
302 |
+
if progress:
|
303 |
+
progress(0.05, "Processing input...")
|
304 |
+
|
305 |
if not api_key:
|
306 |
+
api_key = os.getenv("GENAI_API_KEY")
|
307 |
if not api_key:
|
308 |
raise Exception("No API key provided. Please provide a Gemini API key.")
|
309 |
+
|
310 |
+
podcast_generator = PodcastGenerator()
|
311 |
+
podcast = await podcast_generator.generate_podcast(input_text, language, speaker1, speaker2, api_key, input_file, progress)
|
312 |
+
|
313 |
+
end_time = time.time()
|
314 |
+
print(f"Total podcast generation time: {end_time - start_time:.2f} seconds")
|
315 |
+
return podcast
|
316 |
+
|
317 |
except Exception as e:
|
318 |
+
# Ensure we show a user-friendly error
|
319 |
+
error_msg = str(e)
|
320 |
+
if "rate limit" in error_msg.lower():
|
321 |
raise Exception("Rate limit exceeded. Please try again later or use your own API key.")
|
322 |
+
elif "timeout" in error_msg.lower():
|
323 |
+
raise Exception("The request timed out. This could be due to server load or the length of your input. Please try again with shorter text.")
|
324 |
else:
|
325 |
+
raise Exception(f"Error: {error_msg}")
|
326 |
+
|
327 |
# Gradio UI
|
328 |
+
def generate_podcast_gradio(input_text, input_file, language, speaker1, speaker2, api_key, progress=gr.Progress()):
|
329 |
+
# Handle the file if uploaded
|
330 |
+
file_obj = None
|
331 |
+
if input_file is not None:
|
332 |
+
file_obj = input_file
|
333 |
+
|
334 |
+
# Use the progress function from Gradio
|
335 |
+
def progress_callback(value, text):
|
336 |
+
progress(value, text)
|
337 |
+
|
338 |
+
# Run the async function in the event loop
|
339 |
+
result = asyncio.run(process_input(
|
340 |
+
input_text,
|
341 |
+
file_obj,
|
342 |
+
language,
|
343 |
+
speaker1,
|
344 |
+
speaker2,
|
345 |
+
api_key,
|
346 |
+
progress_callback
|
347 |
+
))
|
348 |
+
|
349 |
+
return result
|
350 |
+
|
351 |
+
def main():
|
352 |
+
# Define language options
|
353 |
+
language_options = [
|
354 |
+
"Auto Detect",
|
355 |
+
"Afrikaans", "Albanian", "Amharic", "Arabic", "Armenian", "Azerbaijani",
|
356 |
+
"Bahasa Indonesian", "Bangla", "Basque", "Bengali", "Bosnian", "Bulgarian",
|
357 |
+
"Burmese", "Catalan", "Chinese Cantonese", "Chinese Mandarin",
|
358 |
+
"Chinese Taiwanese", "Croatian", "Czech", "Danish", "Dutch", "English",
|
359 |
+
"Estonian", "Filipino", "Finnish", "French", "Galician", "Georgian",
|
360 |
+
"German", "Greek", "Hebrew", "Hindi", "Hungarian", "Icelandic", "Irish",
|
361 |
+
"Italian", "Japanese", "Javanese", "Kannada", "Kazakh", "Khmer", "Korean",
|
362 |
+
"Lao", "Latvian", "Lithuanian", "Macedonian", "Malay", "Malayalam",
|
363 |
+
"Maltese", "Mongolian", "Nepali", "Norwegian Bokmål", "Pashto", "Persian",
|
364 |
+
"Polish", "Portuguese", "Romanian", "Russian", "Serbian", "Sinhala",
|
365 |
+
"Slovak", "Slovene", "Somali", "Spanish", "Sundanese", "Swahili",
|
366 |
+
"Swedish", "Tamil", "Telugu", "Thai", "Turkish", "Ukrainian", "Urdu",
|
367 |
+
"Uzbek", "Vietnamese", "Welsh", "Zulu"
|
368 |
+
]
|
369 |
+
|
370 |
+
# Define voice options
|
371 |
+
voice_options = [
|
372 |
+
"Andrew - English (United States)",
|
373 |
+
"Ava - English (United States)",
|
374 |
+
"Brian - English (United States)",
|
375 |
+
"Emma - English (United States)",
|
376 |
+
"Florian - German (Germany)",
|
377 |
+
"Seraphina - German (Germany)",
|
378 |
+
"Remy - French (France)",
|
379 |
+
"Vivienne - French (France)"
|
380 |
+
]
|
381 |
+
|
382 |
+
# Create Gradio interface
|
383 |
+
with gr.Blocks(title="PodcastGen 🎙️") as demo:
|
384 |
+
gr.Markdown("# PodcastGen 🎙️")
|
385 |
+
gr.Markdown("Generate a 2-speaker podcast from text input or documents!")
|
386 |
+
|
387 |
+
with gr.Row():
|
388 |
+
with gr.Column(scale=2):
|
389 |
+
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text for podcast generation...")
|
390 |
+
|
391 |
+
with gr.Column(scale=1):
|
392 |
+
input_file = gr.File(label="Or Upload a PDF or TXT file", file_types=[".pdf", ".txt"])
|
393 |
+
|
394 |
+
with gr.Row():
|
395 |
+
with gr.Column():
|
396 |
+
api_key = gr.Textbox(label="Your Gemini API Key (Optional)", placeholder="Enter API key here if you're getting rate limited", type="password")
|
397 |
+
language = gr.Dropdown(label="Language", choices=language_options, value="Auto Detect")
|
398 |
+
|
399 |
+
with gr.Column():
|
400 |
+
speaker1 = gr.Dropdown(label="Speaker 1 Voice", choices=voice_options, value="Andrew - English (United States)")
|
401 |
+
speaker2 = gr.Dropdown(label="Speaker 2 Voice", choices=voice_options, value="Ava - English (United States)")
|
402 |
+
|
403 |
+
generate_btn = gr.Button("Generate Podcast", variant="primary")
|
404 |
+
|
405 |
+
with gr.Row():
|
406 |
+
output_audio = gr.Audio(label="Generated Podcast", type="filepath", format="wav")
|
407 |
+
|
408 |
+
generate_btn.click(
|
409 |
+
fn=generate_podcast_gradio,
|
410 |
+
inputs=[input_text, input_file, language, speaker1, speaker2, api_key],
|
411 |
+
outputs=[output_audio]
|
412 |
+
)
|
413 |
+
|
414 |
+
demo.launch()
|
415 |
+
|
416 |
+
if __name__ == "__main__":
|
417 |
+
main()
|