Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -9,139 +9,132 @@ import os
|
|
9 |
import time
|
10 |
import mimetypes
|
11 |
from typing import List, Dict
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Constants
|
16 |
MAX_FILE_SIZE_MB = 20
|
17 |
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
|
18 |
|
19 |
-
# Model setup
|
20 |
-
MODEL_ID = "tabularisai/german-gemma-3-1b-it"
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(
|
23 |
-
MODEL_ID,
|
24 |
-
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
25 |
-
device_map="auto",
|
26 |
-
).eval()
|
27 |
-
|
28 |
|
29 |
class PodcastGenerator:
|
30 |
def __init__(self):
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
example = """
|
35 |
{
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
}
|
48 |
"""
|
49 |
-
full_prompt = (
|
50 |
-
f"Lies den Inhalt und fasse ihn in einem kurzen Podcast-Drehbuch in folgender JSON-Struktur zusammen:\n"
|
51 |
-
f"{example}\n\n"
|
52 |
-
f"Inhalt:\n{prompt}"
|
53 |
-
)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
try:
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
text = ""
|
100 |
-
if file is not None:
|
101 |
-
if file.size > MAX_FILE_SIZE_BYTES:
|
102 |
-
return "Datei zu groß. Maximal erlaubt sind 20 MB.", None
|
103 |
-
|
104 |
-
mime_type, _ = mimetypes.guess_type(file.name)
|
105 |
-
if not mime_type or not mime_type.endswith("pdf"):
|
106 |
-
return "Nur PDF-Dateien sind erlaubt.", None
|
107 |
-
|
108 |
-
async with aiofiles.open(file.name, mode="rb") as f:
|
109 |
-
pdf_data = await f.read()
|
110 |
-
import fitz # PyMuPDF
|
111 |
-
with fitz.open(stream=pdf_data, filetype="pdf") as doc:
|
112 |
-
text = "\n".join([page.get_text() for page in doc])
|
113 |
-
else:
|
114 |
-
text = prompt
|
115 |
-
|
116 |
-
progress(0.1, "Erzeuge Skript...")
|
117 |
-
script = await gen.generate_script(text, language, api_key, file_obj=file, progress=progress)
|
118 |
-
|
119 |
-
if "error" in script:
|
120 |
-
return script["error"], None
|
121 |
-
|
122 |
-
progress(0.5, "Erzeuge Audio...")
|
123 |
-
podcast_path = await gen.text_to_audio(script["podcast"], language, progress=progress)
|
124 |
-
|
125 |
-
progress(1.0, "Fertig!")
|
126 |
-
return "Podcast erfolgreich erstellt!", podcast_path
|
127 |
-
|
128 |
-
|
129 |
-
demo = gr.Interface(
|
130 |
-
fn=generate_podcast,
|
131 |
-
inputs=[
|
132 |
-
gr.Textbox(label="Thema oder Text", lines=5, placeholder="Worum soll es im Podcast gehen?"),
|
133 |
-
gr.Radio(["de"], label="Sprache", value="de"),
|
134 |
-
gr.Textbox(label="API Key (nicht benötigt für dieses Modell)", type="password", placeholder=""),
|
135 |
-
gr.File(label="Optional: PDF-Datei hochladen", file_types=[".pdf"])
|
136 |
-
],
|
137 |
-
outputs=[
|
138 |
-
gr.Textbox(label="Status"),
|
139 |
-
gr.Audio(label="Erstellter Podcast", type="filepath")
|
140 |
-
],
|
141 |
-
title="Podcast Generator (German-Gemma)",
|
142 |
-
description="Erstelle Podcasts aus Text oder PDFs mithilfe eines KI-Modells. Nutzt das Modell 'tabularisai/german-gemma-3-1b-it'.",
|
143 |
-
allow_flagging="never"
|
144 |
-
)
|
145 |
-
|
146 |
-
if __name__ == "__main__":
|
147 |
-
demo.launch()
|
|
|
9 |
import time
|
10 |
import mimetypes
|
11 |
from typing import List, Dict
|
12 |
+
|
13 |
+
# NEW – Hugging Face Transformers
|
14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
+
import torch
|
16 |
+
|
17 |
+
# NEW – external model id
|
18 |
+
MODEL_ID = "tabularisai/german-gemma-3-1b-it"
|
19 |
|
20 |
# Constants
|
21 |
MAX_FILE_SIZE_MB = 20
|
22 |
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
class PodcastGenerator:
|
26 |
def __init__(self):
|
27 |
+
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
28 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
MODEL_ID,
|
30 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
31 |
+
device_map="auto",
|
32 |
+
).eval()
|
33 |
+
|
34 |
+
async def generate_script(
|
35 |
+
self,
|
36 |
+
prompt: str,
|
37 |
+
language: str,
|
38 |
+
api_key: str,
|
39 |
+
file_obj=None,
|
40 |
+
progress=None,
|
41 |
+
) -> Dict:
|
42 |
example = """
|
43 |
{
|
44 |
+
"topic": "AGI",
|
45 |
+
"podcast": [
|
46 |
+
{
|
47 |
+
"speaker": 2,
|
48 |
+
"line": "So, AGI, huh? Seems like everyone's talking about it these days."
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"speaker": 1,
|
52 |
+
"line": "Yeah, it's definitely having a moment, isn't it?"
|
53 |
+
}
|
54 |
+
]
|
55 |
}
|
56 |
"""
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
if language == "Auto Detect":
|
59 |
+
language_instruction = (
|
60 |
+
"- The podcast MUST be in the same language as the user input."
|
61 |
+
)
|
62 |
+
else:
|
63 |
+
language_instruction = f"- The podcast MUST be in {language} language"
|
64 |
+
|
65 |
+
system_prompt = f"""
|
66 |
+
You are a professional podcast generator. Your task is to generate a professional podcast script based on the user input.
|
67 |
+
{language_instruction}
|
68 |
+
- The podcast should have 2 speakers.
|
69 |
+
- The podcast should be long.
|
70 |
+
- Do not use names for the speakers.
|
71 |
+
- The podcast should be interesting, lively, and engaging, and hook the listener from the start.
|
72 |
+
- The input text might be disorganized or unformatted, originating from sources like PDFs or text files. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points, identify key definitions, and highlight intriguing facts that would be suitable for discussion in a podcast.
|
73 |
+
- The script must be in JSON format.
|
74 |
+
|
75 |
+
Follow this example structure:
|
76 |
+
{example}
|
77 |
+
"""
|
78 |
+
|
79 |
+
if prompt and file_obj:
|
80 |
+
user_prompt = (
|
81 |
+
f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
|
82 |
+
)
|
83 |
+
elif prompt:
|
84 |
+
user_prompt = (
|
85 |
+
f"Please generate a podcast script based on the following user input:\n{prompt}"
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
user_prompt = "Please generate a podcast script based on the uploaded file."
|
89 |
+
|
90 |
+
# If a file is provided we still read it for completeness (not required for HF generation)
|
91 |
+
if file_obj:
|
92 |
+
_ = await self._read_file_bytes(file_obj)
|
93 |
+
|
94 |
+
if progress:
|
95 |
+
progress(0.3, "Generating podcast script...")
|
96 |
+
|
97 |
+
inputs = self.tokenizer(
|
98 |
+
f"{system_prompt}\n\n{user_prompt}", return_tensors="pt"
|
99 |
+
).to(self.model.device)
|
100 |
|
101 |
try:
|
102 |
+
output = self.model.generate(**inputs, max_new_tokens=2048, temperature=1.0)
|
103 |
+
response_text = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
104 |
+
except Exception as e:
|
105 |
+
raise Exception(f"Failed to generate podcast script: {e}")
|
106 |
+
|
107 |
+
print(f"Generated podcast script:\n{response_text}")
|
108 |
+
|
109 |
+
if progress:
|
110 |
+
progress(0.4, "Script generated successfully!")
|
111 |
+
|
112 |
+
return json.loads(response_text)
|
113 |
+
|
114 |
+
async def _read_file_bytes(self, file_obj) -> bytes:
|
115 |
+
if hasattr(file_obj, "size"):
|
116 |
+
file_size = file_obj.size
|
117 |
+
else:
|
118 |
+
file_size = os.path.getsize(file_obj.name)
|
119 |
+
|
120 |
+
if file_size > MAX_FILE_SIZE_BYTES:
|
121 |
+
raise Exception(
|
122 |
+
f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file."
|
123 |
+
)
|
124 |
+
|
125 |
+
if hasattr(file_obj, "read"):
|
126 |
+
return file_obj.read()
|
127 |
+
else:
|
128 |
+
async with aiofiles.open(file_obj.name, "rb") as f:
|
129 |
+
return await f.read()
|
130 |
+
|
131 |
+
@staticmethod
|
132 |
+
def _get_mime_type(filename: str) -> str:
|
133 |
+
ext = os.path.splitext(filename)[1].lower()
|
134 |
+
if ext == ".pdf":
|
135 |
+
return "application/pdf"
|
136 |
+
elif ext == ".txt":
|
137 |
+
return "text/plain"
|
138 |
+
else:
|
139 |
+
mime_type, _ = mimetypes.guess_type(filename)
|
140 |
+
return mime_type or "application/octet-stream"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|