|
import asyncio |
|
import datetime |
|
import logging |
|
import os |
|
import time |
|
import traceback |
|
|
|
import edge_tts |
|
import gradio as gr |
|
import librosa |
|
import torch |
|
import soundfile |
|
from fairseq import checkpoint_utils |
|
|
|
|
|
from config import Config |
|
from lib.infer_pack.models import ( |
|
SynthesizerTrnMs256NSFsid, |
|
SynthesizerTrnMs256NSFsid_nono, |
|
SynthesizerTrnMs768NSFsid, |
|
SynthesizerTrnMs768NSFsid_nono, |
|
) |
|
from rmvpe import RMVPE |
|
from vc_infer_pipeline import VC |
|
|
|
logging.getLogger("fairseq").setLevel(logging.WARNING) |
|
logging.getLogger("numba").setLevel(logging.WARNING) |
|
logging.getLogger("markdown_it").setLevel(logging.WARNING) |
|
logging.getLogger("urllib3").setLevel(logging.WARNING) |
|
logging.getLogger("matplotlib").setLevel(logging.WARNING) |
|
|
|
limitation = os.getenv("SYSTEM") == "spaces" |
|
|
|
config = Config() |
|
|
|
edge_output_filename = "edge_output.mp3" |
|
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) |
|
tts_voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] |
|
|
|
model_root = "weight" |
|
models = [ |
|
d for d in os.listdir(model_root) if os.path.isdir(os.path.join(model_root, d)) |
|
] |
|
if len(models) == 0: |
|
raise ValueError("No model found in `weights` folder") |
|
models.sort() |
|
|
|
|
|
def model_data(model_name): |
|
|
|
pth_files = [ |
|
os.path.join(model_root, model_name, f) |
|
for f in os.listdir(os.path.join(model_root, model_name)) |
|
if f.endswith(".pth") |
|
] |
|
if len(pth_files) == 0: |
|
raise ValueError(f"No pth file found in {model_root}/{model_name}") |
|
pth_path = pth_files[0] |
|
print(f"Loading {pth_path}") |
|
cpt = torch.load(pth_path, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
else: |
|
raise ValueError("Unknown version") |
|
del net_g.enc_q |
|
net_g.load_state_dict(cpt["weight"], strict=False) |
|
print("Model loaded") |
|
net_g.eval().to(config.device) |
|
if config.is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
|
|
|
|
index_files = [ |
|
os.path.join(model_root, model_name, f) |
|
for f in os.listdir(os.path.join(model_root, model_name)) |
|
if f.endswith(".index") |
|
] |
|
if len(index_files) == 0: |
|
print("No index file found") |
|
index_file = "" |
|
else: |
|
index_file = index_files[0] |
|
print(f"Index file found: {index_file}") |
|
|
|
return tgt_sr, net_g, vc, version, index_file, if_f0 |
|
|
|
|
|
def load_hubert(): |
|
global hubert_model |
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( |
|
["hubert_base.pt"], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(config.device) |
|
if config.is_half: |
|
hubert_model = hubert_model.half() |
|
else: |
|
hubert_model = hubert_model.float() |
|
return hubert_model.eval() |
|
|
|
|
|
print("Loading hubert model...") |
|
hubert_model = load_hubert() |
|
print("Hubert model loaded.") |
|
|
|
print("Loading rmvpe model...") |
|
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device) |
|
print("rmvpe model loaded.") |
|
|
|
|
|
def tts( |
|
model_name, |
|
speed, |
|
tts_text, |
|
|
|
pitch=0.5, |
|
f0_up_key=0, |
|
f0_method="rmvpe", |
|
index_rate=0, |
|
protect=0.33, |
|
|
|
filter_radius=3, |
|
resample_sr=0, |
|
rms_mix_rate=0.25, |
|
|
|
): |
|
if model_name in ["Leela", "Dr-Fizmmo" ]: |
|
tts_voice = "en-US-AriaNeural-Female" |
|
else: |
|
tts_voice = "en-US-GuyNeural-Male" |
|
print("------------------") |
|
print(datetime.datetime.now()) |
|
print("tts_text:") |
|
print(tts_text) |
|
print(f"tts_voice: {tts_voice}") |
|
print(f"Model name: {model_name}") |
|
print(f"F0: {f0_method}, Key: {f0_up_key}, Index: {index_rate}, Protect: {protect}") |
|
try: |
|
if limitation and len(tts_text) > 280: |
|
print("Error: Text too long") |
|
return ( |
|
f"Text characters should be at most 280 in this huggingface space, but got {len(tts_text)} characters.", |
|
|
|
None, |
|
) |
|
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name) |
|
t0 = time.time() |
|
if speed >= 0: |
|
speed_str = f"+{speed}%" |
|
else: |
|
speed_str = f"{speed}%" |
|
asyncio.run( |
|
edge_tts.Communicate( |
|
tts_text, "-".join(tts_voice.split("-")[:-1]), rate=speed_str |
|
).save(edge_output_filename) |
|
) |
|
t1 = time.time() |
|
edge_time = t1 - t0 |
|
unpaudio, sr = librosa.load(edge_output_filename, sr=16000, mono=True) |
|
print(pitch) |
|
audio = librosa.effects.pitch_shift(unpaudio, sr, int(pitch)) |
|
soundfile.write(edge_output_filename, audio, sr,) |
|
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True) |
|
|
|
|
|
duration = len(audio) / sr |
|
print(f"Audio duration: {duration}s") |
|
if limitation and duration >= 20: |
|
print("Error: Audio too long") |
|
return ( |
|
f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.", |
|
|
|
None, |
|
) |
|
|
|
f0_up_key = int(f0_up_key) |
|
|
|
if not hubert_model: |
|
load_hubert() |
|
if f0_method == "rmvpe": |
|
vc.model_rmvpe = rmvpe_model |
|
times = [0, 0, 0] |
|
audio_opt = vc.pipeline( |
|
hubert_model, |
|
net_g, |
|
0, |
|
audio, |
|
edge_output_filename, |
|
times, |
|
f0_up_key, |
|
f0_method, |
|
index_file, |
|
|
|
index_rate, |
|
if_f0, |
|
filter_radius, |
|
tgt_sr, |
|
resample_sr, |
|
rms_mix_rate, |
|
version, |
|
protect, |
|
None, |
|
) |
|
if tgt_sr != resample_sr >= 16000: |
|
tgt_sr = resample_sr |
|
info = f"Success." |
|
print(info) |
|
return ( |
|
info, |
|
|
|
(tgt_sr, audio_opt), |
|
) |
|
except EOFError: |
|
info = ( |
|
"It seems that the edge-tts output is not valid. " |
|
"This may occur when the input text and the speaker do not match. " |
|
"For example, maybe you entered Japanese (without alphabets) text but chose non-Japanese speaker?" |
|
) |
|
print(info) |
|
return info, None |
|
except: |
|
info = traceback.format_exc() |
|
print(info) |
|
return info, None |
|
|
|
|
|
|
|
initial_md = """ |
|
# Hatch new voice sound |
|
|
|
|
|
""" |
|
|
|
app = gr.Blocks(theme='ParityError/Interstellar') |
|
with app: |
|
gr.Markdown(initial_md) |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name = gr.Dropdown(label="Model", choices=models, value=models[0]) |
|
|
|
|
|
|
|
with gr.Tab("Text"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
speed = gr.Slider( |
|
minimum=-100, |
|
maximum=100, |
|
label="Speech speed (%)", |
|
value=0, |
|
step=10, |
|
interactive=True, |
|
) |
|
tts_text = gr.Textbox(label="Input Text", value="There is no substitute for hard work.") |
|
with gr.Column(): |
|
but0 = gr.Button("Convert", variant="primary") |
|
info_text = gr.Textbox(label="Output info") |
|
with gr.Column(): |
|
|
|
tts_output = gr.Audio(label="Result") |
|
but0.click( |
|
tts, |
|
[ |
|
model_name, |
|
speed, |
|
tts_text, |
|
|
|
|
|
|
|
|
|
], |
|
[info_text, tts_output], |
|
) |
|
|
|
|
|
|
|
|
|
app.launch() |
|
|