import gradio as gr from transformers import AutoTokenizer, pipeline from optimum.onnxruntime import ORTModelForSequenceClassification model_id = "SamLowe/roberta-base-go_emotions-onnx" file_name = "onnx/model_quantized.onnx" model = ORTModelForSequenceClassification.from_pretrained(model_id, file_name=file_name) tokenizer = AutoTokenizer.from_pretrained(model_id) classifier = pipeline( task = "text-classification", model = model, tokenizer = tokenizer, top_k = None, function_to_apply = "sigmoid", ) def predict(param_0): results = classifier(param_0) return { "label": results[0][0]["label"], "confidences": results[0] } demo = gr.Interface( fn = predict, inputs = 'text', outputs = 'json', ) demo.launch()