Lord-Raven commited on
Commit
402f3c1
·
1 Parent(s): ad8df9b

Trying ONNX models on CPU.

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -21,15 +21,14 @@ app.add_middleware(
21
  )
22
 
23
  print(f"Is CUDA available: {torch.cuda.is_available()}")
24
- print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
25
-
26
- # "xenova/mobilebert-uncased-mnli" "typeform/mobilebert-uncased-mnli" Fast but small--same as bundled in Statosphere
27
 
28
  model_name = "MoritzLaurer/roberta-large-zeroshot-v2.0-c"
29
  tokenizer_name = "MoritzLaurer/roberta-large-zeroshot-v2.0-c"
30
 
31
  classifier_cpu = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name)
32
- classifier_gpu = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name, device="cuda:0")
33
 
34
  def classify(data_string, request: gradio.Request):
35
  if request:
 
21
  )
22
 
23
  print(f"Is CUDA available: {torch.cuda.is_available()}")
24
+ if torch.cuda.is_available():
25
+ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
 
26
 
27
  model_name = "MoritzLaurer/roberta-large-zeroshot-v2.0-c"
28
  tokenizer_name = "MoritzLaurer/roberta-large-zeroshot-v2.0-c"
29
 
30
  classifier_cpu = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name)
31
+ classifier_gpu = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name, device="cuda:0") if torch.cuda.is_available() else classifier_cpu
32
 
33
  def classify(data_string, request: gradio.Request):
34
  if request: