File size: 10,527 Bytes
e6ac593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from typing import List, Optional

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from ripe import utils
from ripe.utils.utils import gridify

log = utils.get_pylogger(__name__)


class KeypointSampler(nn.Module):
    """
    Sample keypoints according to a Heatmap
    Adapted from: https://github.com/verlab/DALF_CVPR_2023/blob/main/modules/models/DALF.py
    """

    def __init__(self, window_size=8):
        super().__init__()
        self.window_size = window_size
        self.idx_cells = None  # Cache for meshgrid indices

    def sample(self, grid):
        """
        Sample keypoints given a grid where each cell has logits stacked in last dimension
        Input
          grid: [B, C, H//w, W//w, w*w]

        Returns
          log_probs: [B, C, H//w, W//w ] - logprobs of selected samples
          choices: [B, C, H//w, W//w] indices of choices
          accept_mask: [B, C, H//w, W//w] mask of accepted keypoints

        """
        chooser = torch.distributions.Categorical(logits=grid)
        choices = chooser.sample()
        logits_selected = torch.gather(grid, -1, choices.unsqueeze(-1)).squeeze(-1)

        flipper = torch.distributions.Bernoulli(logits=logits_selected)
        accepted_choices = flipper.sample()

        # Sum log-probabilities is equivalent to multiplying the probabilities
        log_probs = chooser.log_prob(choices) + flipper.log_prob(accepted_choices)

        accept_mask = accepted_choices.gt(0)

        return (
            log_probs.squeeze(1),
            choices,
            accept_mask.squeeze(1),
            logits_selected.squeeze(1),
        )

    def precompute_idx_cells(self, H, W, device):
        idx_cells = gridify(
            torch.dstack(
                torch.meshgrid(
                    torch.arange(H, dtype=torch.float32, device=device),
                    torch.arange(W, dtype=torch.float32, device=device),
                )
            )
            .permute(2, 0, 1)
            .unsqueeze(0)
            .expand(1, -1, -1, -1),
            window_size=self.window_size,
        )

        return idx_cells

    def forward(self, x, mask_padding=None):
        """
        Sample keypoints from a heatmap
        Input
          x: [B, C, H, W] Heatmap
          mask_padding: [B, 1, H, W] Mask for padding (optional)
        Returns
            keypoints: [B, H//w, W//w, 2] Keypoints in (x, y) format
            log_probs: [B, H//w, W//w] Log probabilities of selected keypoints
            mask: [B, H//w, W//w] Mask of accepted keypoints
            mask_padding: [B, 1, H//w, W//w] Mask of padding (optional)
            logits_selected: [B, H//w, W//w] Logits of selected keypoints
        """

        B, C, H, W = x.shape

        keypoint_cells = gridify(x, self.window_size)

        mask_padding = (
            (torch.min(gridify(mask_padding, self.window_size), dim=4).values) if mask_padding is not None else None
        )

        if self.idx_cells is None or self.idx_cells.shape[2:4] != (
            H // self.window_size,
            W // self.window_size,
        ):
            self.idx_cells = self.precompute_idx_cells(H, W, x.device)

        log_probs, idx, mask, logits_selected = self.sample(keypoint_cells)

        keypoints = (
            torch.gather(
                self.idx_cells.expand(B, -1, -1, -1, -1),
                -1,
                idx.repeat(1, 2, 1, 1).unsqueeze(-1),
            )
            .squeeze(-1)
            .permute(0, 2, 3, 1)
        )

        # flip keypoints to (x, y) format
        return keypoints.flip(-1), log_probs, mask, mask_padding, logits_selected


class RIPE(nn.Module):
    """
    Base class for extracting keypoints and descriptors
    Input
      x: [B, C, H, W] Images

    Returns
      kpts:
        list of size [B] with detected keypoints
      descs:
        list of size [B] with descriptors
    """

    def __init__(
        self,
        net,
        upsampler,
        window_size: int = 8,
        non_linearity_dect=None,
        desc_shares: Optional[List[int]] = None,
        descriptor_dim: int = 256,
        device=None,
    ):
        super().__init__()
        self.net = net

        self.detector = KeypointSampler(window_size)
        self.upsampler = upsampler
        self.sampler = None
        self.window_size = window_size
        self.non_linearity_dect = non_linearity_dect if non_linearity_dect is not None else nn.Identity()

        log.info(f"Training with window size {window_size}.")
        log.info(f"Use {non_linearity_dect} as final non-linearity before the detection heatmap.")

        dim_coarse_desc = self.get_dim_raw_desc()

        if desc_shares is not None:
            assert upsampler.name == "HyperColumnFeatures", (
                "Individual descriptor convolutions are only supported with HyperColumnFeatures"
            )
            assert len(desc_shares) == 4, "desc_shares should have 4 elements"
            assert sum(desc_shares) == descriptor_dim, f"sum of desc_shares should be {descriptor_dim}"

            self.conv_dim_reduction_coarse_desc = nn.ModuleList()

            for dim_in, dim_out in zip(dim_coarse_desc, desc_shares):
                log.info(f"Training dim reduction descriptor with {dim_in} -> {dim_out} 1x1 conv")
                self.conv_dim_reduction_coarse_desc.append(
                    nn.Conv1d(dim_in, dim_out, kernel_size=1, stride=1, padding=0)
                )
        else:
            if descriptor_dim is not None:
                log.info(f"Training dim reduction descriptor with {sum(dim_coarse_desc)} -> {descriptor_dim} 1x1 conv")
                self.conv_dim_reduction_coarse_desc = nn.Conv1d(
                    sum(dim_coarse_desc),
                    descriptor_dim,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                )
            else:
                log.warning(
                    f"No descriptor dimension specified, no 1x1 conv will be applied! Direct usage of {sum(dim_coarse_desc)}-dimensional raw descriptor"
                )
                self.conv_dim_reduction_coarse_desc = nn.Identity()

    def get_dim_raw_desc(self):
        layers_dims_encoder = self.net.get_dim_layers_encoder()

        if self.upsampler.name == "InterpolateSparse2d":
            return [layers_dims_encoder[-1]]
        elif self.upsampler.name == "HyperColumnFeatures":
            return layers_dims_encoder
        else:
            raise ValueError(f"Unknown interpolator {self.upsampler.name}")

    @torch.inference_mode()
    def detectAndCompute(self, img, threshold=0.5, top_k=2048, output_aux=False):
        self.train(False)

        if img.dim() == 3:
            img = img.unsqueeze(0)

        out = self(img, training=False)
        B, K, H, W = out["heatmap"].shape

        assert B == 1, "Batch size should be 1"

        kpts = [{"xy": self.NMS(out["heatmap"][b], threshold)} for b in range(B)]

        if top_k is not None:
            for b in range(B):
                scores = out["heatmap"][b].squeeze(0)[kpts[b]["xy"][:, 1].long(), kpts[b]["xy"][:, 0].long()]
                sorted_idx = torch.argsort(-scores)
                kpts[b]["xy"] = kpts[b]["xy"][sorted_idx[:top_k]]
                if "logprobs" in kpts[b]:
                    kpts[b]["logprobs"] = kpts[b]["xy"][sorted_idx[:top_k]]

        if kpts[0]["xy"].shape[0] == 0:
            raise RuntimeError("No keypoints detected")

        # the following works for batch size 1 only

        descs = self.get_descs(out["coarse_descs"], img, kpts[0]["xy"].unsqueeze(0), H, W)
        descs = descs.squeeze(0)

        score_map = out["heatmap"][0].squeeze(0)

        kpts = kpts[0]["xy"]

        scores = score_map[kpts[:, 1], kpts[:, 0]]
        scores /= score_map.max()

        sort_idx = torch.argsort(-scores)
        kpts, descs, scores = kpts[sort_idx], descs[sort_idx], scores[sort_idx]

        if output_aux:
            return (
                kpts.float(),
                descs,
                scores,
                {
                    "heatmap": out["heatmap"],
                    "descs": out["coarse_descs"],
                    "conv": self.conv_dim_reduction_coarse_desc,
                },
            )

        return kpts.float(), descs, scores

    def NMS(self, x, threshold=3.0, kernel_size=3):
        pad = kernel_size // 2
        local_max = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=pad)(x)

        pos = (x == local_max) & (x > threshold)
        return pos.nonzero()[..., 1:].flip(-1)

    def get_descs(self, feature_map, guidance, kpts, H, W):
        descs = self.upsampler(feature_map, kpts, H, W)

        if isinstance(self.conv_dim_reduction_coarse_desc, nn.ModuleList):
            # individual descriptor convolutions for each layer
            desc_conv = []
            for desc, conv in zip(descs, self.conv_dim_reduction_coarse_desc):
                desc_conv.append(conv(desc.permute(0, 2, 1)).permute(0, 2, 1))
            desc = torch.cat(desc_conv, dim=-1)
        else:
            desc = torch.cat(descs, dim=-1)
            desc = self.conv_dim_reduction_coarse_desc(desc.permute(0, 2, 1)).permute(0, 2, 1)

        desc = F.normalize(desc, dim=2)

        return desc

    def forward(self, x, mask_padding=None, training=False):
        B, C, H, W = x.shape
        out = self.net(x)
        out["heatmap"] = self.non_linearity_dect(out["heatmap"])
        # print(out['map'].shape, out['descr'].shape)
        if training:
            kpts, log_probs, mask, mask_padding, logits_selected = self.detector(out["heatmap"], mask_padding)

            filter_A = kpts[:, :, :, 0] >= 16
            filter_B = kpts[:, :, :, 1] >= 16
            filter_C = kpts[:, :, :, 0] < W - 16
            filter_D = kpts[:, :, :, 1] < H - 16
            filter_all = filter_A * filter_B * filter_C * filter_D

            mask = mask * filter_all

            return (
                kpts.view(B, -1, 2),
                log_probs.view(B, -1),
                mask.view(B, -1),
                mask_padding.view(B, -1),
                logits_selected.view(B, -1),
                out,
            )
        else:
            return out


def output_number_trainable_params(model):
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    nb_params = sum([np.prod(p.size()) for p in model_parameters])

    print(f"Number of trainable parameters: {nb_params:d}")