File size: 6,798 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from loguru import logger

import torch
import torch.nn as nn
from kornia.geometry.conversions import convert_points_to_homogeneous
from kornia.geometry.epipolar import numeric

class XoFTRLoss(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config  # config under the global namespace
        self.loss_config = config['xoftr']['loss']
        self.pos_w = self.loss_config['pos_weight']
        self.neg_w = self.loss_config['neg_weight']


    def compute_fine_matching_loss(self, data):
        """ Point-wise Focal Loss with 0 / 1 confidence as gt.
        Args:
        data (dict): {
            conf_matrix_fine (torch.Tensor): (N, W_f^2, W_f^2) 
            conf_matrix_f_gt (torch.Tensor): (N, W_f^2, W_f^2) 
            }
        """
        conf_matrix_fine = data['conf_matrix_fine']
        conf_matrix_f_gt = data['conf_matrix_f_gt']
        pos_mask, neg_mask = conf_matrix_f_gt > 0, conf_matrix_f_gt == 0
        pos_w, neg_w = self.pos_w, self.neg_w

        if not pos_mask.any():  # assign a wrong gt
            pos_mask[0, 0, 0] = True
            pos_w = 0.
        if not neg_mask.any():
            neg_mask[0, 0, 0] = True
            neg_w = 0.

        conf_matrix_fine = torch.clamp(conf_matrix_fine, 1e-6, 1-1e-6)
        alpha = self.loss_config['focal_alpha']
        gamma = self.loss_config['focal_gamma']

        loss_pos = - alpha * torch.pow(1 - conf_matrix_fine[pos_mask], gamma) * (conf_matrix_fine[pos_mask]).log()
        # loss_pos *= conf_matrix_f_gt[pos_mask]
        loss_neg = - alpha * torch.pow(conf_matrix_fine[neg_mask], gamma) * (1 - conf_matrix_fine[neg_mask]).log()

        return pos_w * loss_pos.mean() + neg_w * loss_neg.mean()
    
    def _symmetric_epipolar_distance(self, pts0, pts1, E, K0, K1):
            """Squared symmetric epipolar distance.
            This can be seen as a biased estimation of the reprojection error.
            Args:
                pts0 (torch.Tensor): [N, 2]
                E (torch.Tensor): [3, 3]
            """
            pts0 = (pts0 - K0[:, [0, 1], [2, 2]]) / K0[:, [0, 1], [0, 1]]
            pts1 = (pts1 - K1[:, [0, 1], [2, 2]]) / K1[:, [0, 1], [0, 1]]
            pts0 = convert_points_to_homogeneous(pts0)
            pts1 = convert_points_to_homogeneous(pts1)

            Ep0 = (pts0[:,None,:] @ E.transpose(-2,-1)).squeeze(1)  # [N, 3]
            p1Ep0 = torch.sum(pts1 * Ep0, -1)  # [N,]
            Etp1 = (pts1[:,None,:] @ E).squeeze(1)  # [N, 3]

            d = p1Ep0**2 * (1.0 / (Ep0[:, 0]**2 + Ep0[:, 1]**2 + 1e-9) + 1.0 / (Etp1[:, 0]**2 + Etp1[:, 1]**2 + 1e-9))  # N
            return d
    
    def compute_sub_pixel_loss(self, data):
        """ symmetric epipolar distance loss.
        Args:
        data (dict): {
            m_bids (torch.Tensor): (N)
            T_0to1 (torch.Tensor): (B, 4, 4)
            mkpts0_f_train (torch.Tensor): (N, 2) 
            mkpts1_f_train (torch.Tensor): (N, 2) 
            }
        """

        Tx = numeric.cross_product_matrix(data['T_0to1'][:, :3, 3])
        E_mat = Tx @ data['T_0to1'][:, :3, :3]

        m_bids = data['m_bids']
        pts0 = data['mkpts0_f_train']
        pts1 = data['mkpts1_f_train']
        
        sym_dist = self._symmetric_epipolar_distance(pts0, pts1, E_mat[m_bids], data['K0'][m_bids], data['K1'][m_bids])
        # filter matches with high epipolar error (only train approximately correct fine-level matches)
        loss = sym_dist[sym_dist<1e-4]
        if len(loss) == 0:
            return torch.zeros(1, device=loss.device, requires_grad=False)[0]
        return loss.mean()
    
    def compute_coarse_loss(self, data, weight=None):
        """ Point-wise CE / Focal Loss with 0 / 1 confidence as gt.
        Args:
        data (dict): {
            conf_matrix_0_to_1 (torch.Tensor): (N, HW0, HW1) 
            conf_matrix_1_to_0 (torch.Tensor): (N, HW0, HW1) 
            conf_gt (torch.Tensor): (N, HW0, HW1)
            }
            weight (torch.Tensor): (N, HW0, HW1)
        """

        conf_matrix_0_to_1 = data["conf_matrix_0_to_1"]
        conf_matrix_1_to_0 = data["conf_matrix_1_to_0"]
        conf_gt = data["conf_matrix_gt"]

        pos_mask = conf_gt == 1
        c_pos_w = self.pos_w
        # corner case: no gt coarse-level match at all
        if not pos_mask.any():  # assign a wrong gt
            pos_mask[0, 0, 0] = True
            if weight is not None:
                weight[0, 0, 0] = 0.
            c_pos_w = 0.

        conf_matrix_0_to_1 = torch.clamp(conf_matrix_0_to_1, 1e-6, 1-1e-6)
        conf_matrix_1_to_0 = torch.clamp(conf_matrix_1_to_0, 1e-6, 1-1e-6)
        alpha = self.loss_config['focal_alpha']
        gamma = self.loss_config['focal_gamma']
        
        loss_pos = - alpha * torch.pow(1 - conf_matrix_0_to_1[pos_mask], gamma) * (conf_matrix_0_to_1[pos_mask]).log()
        loss_pos += - alpha * torch.pow(1 - conf_matrix_1_to_0[pos_mask], gamma) * (conf_matrix_1_to_0[pos_mask]).log()
        if weight is not None:
            loss_pos = loss_pos * weight[pos_mask]
        
        loss_c = (c_pos_w * loss_pos.mean())

        return loss_c
                
    @torch.no_grad()
    def compute_c_weight(self, data):
        """ compute element-wise weights for computing coarse-level loss. """
        if 'mask0' in data:
            c_weight = (data['mask0'].flatten(-2)[..., None] * data['mask1'].flatten(-2)[:, None]).float()
        else:
            c_weight = None
        return c_weight

    def forward(self, data):
        """
        Update:
            data (dict): update{
                'loss': [1] the reduced loss across a batch,
                'loss_scalars' (dict): loss scalars for tensorboard_record
            }
        """
        loss_scalars = {}
        # 0. compute element-wise loss weight
        c_weight = self.compute_c_weight(data)

        # 1. coarse-level loss
        loss_c = self.compute_coarse_loss(data, weight=c_weight)
        loss_c *= self.loss_config['coarse_weight'] 
        loss = loss_c 
        loss_scalars.update({"loss_c": loss_c.clone().detach().cpu()})

        # 2. fine-level matching loss for windows
        loss_f_match = self.compute_fine_matching_loss(data)
        loss_f_match *= self.loss_config['fine_weight'] 
        loss = loss + loss_f_match 
        loss_scalars.update({"loss_f":  loss_f_match.clone().detach().cpu()})

        # 3. sub-pixel refinement loss 
        loss_sub = self.compute_sub_pixel_loss(data)
        loss_sub *= self.loss_config['sub_weight'] 
        loss = loss + loss_sub 
        loss_scalars.update({"loss_sub":  loss_sub.clone().detach().cpu()})
        

        loss_scalars.update({'loss': loss.clone().detach().cpu()})
        data.update({"loss": loss, "loss_scalars": loss_scalars})