Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class HyperColumnFeatures(nn.Module): | |
""" | |
Interpolate 3D tensor given N sparse 2D positions | |
Input | |
x: list([C, H, W]) list of feature tensors at different scales (e.g. from a U-Net) -> extract hypercolumn features | |
pos: [N, 2] tensor of positions | |
H: int, height of the OUTPUT map | |
W: int, width of the OUTPUT map | |
Returns | |
[N, C] sampled features at 2d positions | |
""" | |
def __init__(self, mode="bilinear"): | |
super().__init__() | |
self.mode = mode | |
self.name = "HyperColumnFeatures" | |
def normgrid(self, x, H, W): | |
return 2.0 * (x / (torch.tensor([W - 1, H - 1], device=x.device, dtype=x.dtype))) - 1.0 | |
def extract_values_at_poses(self, x, pos, H, W): | |
"""Extract values from tensor x at the positions given by pos. | |
Args: | |
- x (Tensor): Tensor of size (C, H, W). | |
- pos (Tensor): Tensor of size (N, 2) containing the x, y positions. | |
Returns: | |
- values (Tensor): Tensor of size (N, C) with the values from f at the positions given by p. | |
""" | |
# check if grid is float32 | |
if x.dtype != torch.float32: | |
x = x.to(torch.float32) | |
grid = self.normgrid(pos, H, W).unsqueeze(-2) | |
x = F.grid_sample(x, grid, mode=self.mode, align_corners=True) | |
return x.permute(0, 2, 3, 1).squeeze(-2) | |
def forward(self, x, pos, H, W): | |
descs = [] | |
for layer in x: | |
desc = self.extract_values_at_poses(layer, pos, H, W) | |
descs.append(desc) | |
return descs | |