import torch import torch.nn as nn class BackboneBase(nn.Module): """Base class for backbone networks. Provides a standard interface for preprocessing inputs and defining encoder dimensions. Args: nchannels (int): Number of input channels. use_instance_norm (bool): Whether to apply instance normalization. """ def __init__(self, nchannels=3, use_instance_norm=False): super().__init__() assert nchannels > 0, "Number of channels must be positive." self.nchannels = nchannels self.use_instance_norm = use_instance_norm self.norm = nn.InstanceNorm2d(nchannels) if use_instance_norm else None def get_dim_layers_encoder(self): """Get dimensions of encoder layers.""" raise NotImplementedError("Subclasses must implement this method.") def _forward(self, x): """Define the forward pass for the backbone.""" raise NotImplementedError("Subclasses must implement this method.") def forward(self, x: torch.Tensor, preprocess=True): """Forward pass with optional preprocessing. Args: x (Tensor): Input tensor. preprocess (bool): Whether to apply channel reduction. """ if preprocess: if x.dim() != 4: if x.dim() == 2 and x.shape[0] > 3 and x.shape[1] > 3: x = x.unsqueeze(0).unsqueeze(0) elif x.dim() == 3: x = x.unsqueeze(0) else: raise ValueError(f"Unexpected input shape: {x.shape}") if self.nchannels == 1 and x.shape[1] != 1: if len(x.shape) == 4: # Assumes (batch, channel, height, width) x = torch.mean(x, axis=1, keepdim=True) else: raise ValueError(f"Unexpected input shape: {x.shape}") # if self.nchannels == 3 and x.shape[1] == 1: if len(x.shape) == 4: x = x.repeat(1, 3, 1, 1) else: raise ValueError(f"Unexpected input shape: {x.shape}") if self.use_instance_norm: x = self.norm(x) return self._forward(x)