import torch import torch.nn.functional as F from torch import nn class InterpolateSparse2d(nn.Module): """ Interpolate 3D tensor given N sparse 2D positions Input x: list([C, H, W]) feature tensors at different scales (e.g. from a U-Net), ONLY the last one is used pos: [N, 2] tensor of positions H: int, height of the OUTPUT map W: int, width of the OUTPUT map Returns [N, C] sampled features at 2d positions """ def __init__(self, mode="bicubic"): super().__init__() self.mode = mode self.name = "InterpolateSparse2d" def normgrid(self, x, H, W): return 2.0 * (x / (torch.tensor([W - 1, H - 1], device=x.device, dtype=x.dtype))) - 1.0 def forward(self, x, pos, H, W): x = x[-1] # only use the last layer # check if grid is float32 if x.dtype != torch.float32: x = x.to(torch.float32) grid = self.normgrid(pos, H, W).unsqueeze(-2) x = F.grid_sample(x, grid, mode=self.mode, align_corners=True) return [x.permute(0, 2, 3, 1).squeeze(-2)]