Spaces:
Sleeping
Sleeping
File size: 13,643 Bytes
01fb3ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# GRADIO HF SPACE
import gradio as gr
import requests
import pandas as pd
from datetime import datetime, timedelta
import urllib.parse
def get_hf_models_by_category():
"""
Fetch top 3 models from each Hugging Face category ranked by likes7d
"""
# Hugging Face API endpoint
api_url = "https://huggingface.co/api/models"
# Common model categories on Hugging Face
categories = [
"text-generation",
"text-classification",
"token-classification",
"question-answering",
"fill-mask",
"summarization",
"translation",
"text2text-generation",
"image-classification",
"object-detection",
"image-segmentation",
"text-to-image",
"image-to-text",
"automatic-speech-recognition",
"audio-classification",
"text-to-speech",
"audio-to-audio",
"voice-activity-detection",
"depth-estimation",
"image-feature-extraction",
"other"
]
results = {}
for category in categories:
try:
# Fetch models for this category, sorted by likes in the last 7 days
params = {
"pipeline_tag": category,
"sort": "likes7d",
"direction": -1,
"limit": 3,
"full": True # Get full model info including downloads
}
response = requests.get(api_url, params=params, timeout=10)
if response.status_code == 200:
models = response.json()
category_models = []
for model in models:
# Try different field names for model ID
model_id = model.get("id") or model.get("modelId") or model.get("_id", "Unknown")
# Get likes (might be in different fields)
likes = (model.get("likes") or
model.get("likesRecent") or
model.get("likes7d") or 0)
# Get downloads (different possible field names)
downloads = (model.get("downloads") or
model.get("downloadsAllTime") or
model.get("downloads_all_time") or
model.get("downloads_last_month", 0))
# Get last modified date
last_modified = (model.get("lastModified") or
model.get("last_modified") or
model.get("createdAt") or
model.get("updatedAt") or "Unknown")
model_info = {
"name": model_id,
"likes": likes,
"downloads": downloads,
"updated": last_modified,
"url": f"https://huggingface.co/{model_id}"
}
category_models.append(model_info)
if category_models: # Only add if we found models
results[category] = category_models
except Exception as e:
print(f"Error fetching {category}: {str(e)}")
continue
return results
def format_number(num):
"""Format large numbers in a readable way"""
if num >= 1000000:
return f"{num/1000000:.1f}M"
elif num >= 1000:
return f"{num/1000:.1f}k"
else:
return str(num)
def format_date(date_str):
"""Format date string to be more readable"""
if date_str == "Unknown" or not date_str:
return "Unknown"
try:
# Parse the ISO date string and format it
if "T" in date_str:
date_obj = datetime.fromisoformat(date_str.replace("Z", "+00:00"))
return date_obj.strftime("%Y-%m-%d")
else:
return date_str[:10] # Just take the date part
except:
return "Unknown"
def format_model_display(models_data):
"""
Format the models data into a nice display format
"""
if not models_data:
return "No models found or API unavailable."
html_content = """
<div style="font-family: Arial, sans-serif; max-width: 1200px; margin: 0 auto;">
<h1 style="text-align: center; color: #ff6b6b; margin-bottom: 30px;">
π€ Top 3 Hugging Face Models by Category (Last 7 Days)
</h1>
"""
for category, models in models_data.items():
if not models:
continue
# Format category name
category_display = category.replace("-", " ").title()
html_content += f"""
<div style="margin-bottom: 40px; border: 2px solid #f0f0f0; border-radius: 10px; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white;">
<h2 style="margin-top: 0; text-align: center; font-size: 24px; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">
π {category_display}
</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(380px, 1fr)); gap: 20px; margin-top: 20px;">
"""
for i, model in enumerate(models[:3], 1):
medal = "π₯" if i == 1 else "π₯" if i == 2 else "π₯"
# Format the numbers and date
likes_formatted = format_number(model['likes'])
downloads_formatted = format_number(model['downloads'])
date_formatted = format_date(model['updated'])
author = model['name'].split("/")[0]
model_name = model['name'].split("/")[-1]
model_normal_name = model_name.replace("-", " ").title()
# Create YouTube search URL
youtube_search_query = urllib.parse.quote(f"{model_normal_name} {author} AI")
youtube_url = f"https://www.youtube.com/results?search_query={youtube_search_query}"
html_content += f"""
<div style="background: rgba(255,255,255,0.95); color: #333; padding: 20px; border-radius: 8px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); display: flex; flex-direction: column; height: 100%;">
<div style="display: flex; align-items: center; margin-bottom: 15px;">
<span style="font-size: 24px; margin-right: 10px;">{medal}</span>
<h3 style="margin: 0; font-size: 16px; color: #2d3748;">#{i}</h3>
</div>
<h4 style="margin: 0 0 15px 0; font-size: 18px; color: #2b6cb0; word-break: break-word; line-height: 1.3; flex-grow: 1;">
<a href="{model['url']}" target="_blank" style="text-decoration: none; color: #2b6cb0;">
{model['name']}
</a>
</h4>
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 8px; margin-bottom: 15px;">
<div style="text-align: center; padding: 8px; background: #f7fafc; border-radius: 6px;">
<div style="font-size: 16px; margin-bottom: 2px;">β€οΈ</div>
<div style="font-size: 12px; color: #4a5568; font-weight: bold;">Likes</div>
<div style="background: #e53e3e; color: white; padding: 2px 6px; border-radius: 12px; font-size: 11px; margin-top: 4px; display: inline-block;">
{likes_formatted}
</div>
</div>
<div style="text-align: center; padding: 8px; background: #f7fafc; border-radius: 6px;">
<div style="font-size: 16px; margin-bottom: 2px;">π₯</div>
<div style="font-size: 12px; color: #4a5568; font-weight: bold;">Downloads</div>
<div style="background: #38a169; color: white; padding: 2px 6px; border-radius: 12px; font-size: 11px; margin-top: 4px; display: inline-block;">
{downloads_formatted}
</div>
</div>
<div style="text-align: center; padding: 8px; background: #f7fafc; border-radius: 6px;">
<div style="font-size: 16px; margin-bottom: 2px;">π</div>
<div style="font-size: 12px; color: #4a5568; font-weight: bold;">Updated</div>
<div style="background: #3182ce; color: white; padding: 2px 6px; border-radius: 12px; font-size: 11px; margin-top: 4px; display: inline-block;">
{date_formatted}
</div>
</div>
</div>
<div style="display: flex; gap: 8px; margin-top: auto;">
<a href="{model['url']}" target="_blank" style="flex: 1; text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 8px 12px; border-radius: 6px; text-decoration: none; font-size: 12px; font-weight: bold; transition: all 0.2s;">
π€ View Model
</a>
<a href="{youtube_url}" target="_blank" style="flex: 1; text-align: center; background: linear-gradient(135deg, #ff0000 0%, #cc0000 100%); color: white; padding: 8px 12px; border-radius: 6px; text-decoration: none; font-size: 12px; font-weight: bold; transition: all 0.2s;">
πΊ Find on YouTube
</a>
</div>
</div>
"""
html_content += """
</div>
</div>
"""
html_content += f"""
<div style="text-align: center; margin-top: 30px; padding: 20px; background-color: #f8f9fa; border-radius: 10px;">
<p style="color: #6c757d; font-style: italic; margin-bottom: 10px;">
π Data fetched from Hugging Face API β’ Updated: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")} UTC
</p>
<p style="color: #6c757d; font-size: 12px; margin: 0;">
Rankings based on likes received in the last 7 days β’ Found {len(models_data)} categories with active models
</p>
</div>
</div>
"""
return html_content
def refresh_models():
"""
Refresh and get the latest model data
"""
models_data = get_hf_models_by_category()
formatted_display = format_model_display(models_data)
return formatted_display
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="π€ Top HF Models by Category",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1400px !important;
}
.gr-button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
}
"""
) as demo:
gr.Markdown("""
# π€ Hugging Face Model Explorer
Discover the most popular models across different categories on Hugging Face!
This space shows the **top 3 models** in each category ranked by **likes received in the last 7 days**.
Click the refresh button to get the latest rankings!
""")
with gr.Row():
refresh_btn = gr.Button(
"π Refresh Rankings",
variant="primary",
size="lg"
)
with gr.Row():
gr.Markdown("""
**π― What you'll see:**
- β€οΈ **Likes**: Community appreciation in the last 7 days
- π₯ **Downloads**: Total download count (all-time)
- π **Updated**: Last modification date
- π€ **View Model**: Direct link to model page
- πΊ **Find on YouTube**: Search for tutorials and demos
""")
output_html = gr.HTML(
value=refresh_models(), # Load initial data
label="Top Models by Category"
)
refresh_btn.click(
fn=refresh_models,
outputs=output_html
)
gr.Markdown("""
---
### βΉοΈ About This Space
- **Data Source**: Hugging Face Models API (`/api/models`)
- **Ranking Metric**: Likes received in the last 7 days (`sort=likes7d`)
- **Categories**: All major model types (text, image, audio, multimodal, etc.)
- **Update Frequency**: Real-time (when you click refresh)
**Note**: Only categories with available models are displayed. Some specialized categories might not appear if no models are currently trending.
π **Pro tip**: Use the YouTube button to find tutorials, demos, and implementation guides for each model!
""")
return demo
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0", # For Hugging Face Spaces
server_port=7860, # Standard port for HF Spaces
share=False,
debug=False
) |