# GRADIO HF SPACE
import gradio as gr
import requests
import pandas as pd
from datetime import datetime, timedelta
import urllib.parse
def get_hf_models_by_category():
"""
Fetch top 3 models from each Hugging Face category ranked by likes7d
"""
# Hugging Face API endpoint
api_url = "https://huggingface.co/api/models"
# Common model categories on Hugging Face
categories = [
"text-generation",
"text-classification",
"token-classification",
"question-answering",
"fill-mask",
"summarization",
"translation",
"text2text-generation",
"image-classification",
"object-detection",
"image-segmentation",
"text-to-image",
"image-to-text",
"automatic-speech-recognition",
"audio-classification",
"text-to-speech",
"audio-to-audio",
"voice-activity-detection",
"depth-estimation",
"image-feature-extraction",
"other"
]
results = {}
for category in categories:
try:
# Fetch models for this category, sorted by likes in the last 7 days
params = {
"pipeline_tag": category,
"sort": "likes7d",
"direction": -1,
"limit": 3,
"full": True # Get full model info including downloads
}
response = requests.get(api_url, params=params, timeout=10)
if response.status_code == 200:
models = response.json()
category_models = []
for model in models:
# Try different field names for model ID
model_id = model.get("id") or model.get("modelId") or model.get("_id", "Unknown")
# Get likes (might be in different fields)
likes = (model.get("likes") or
model.get("likesRecent") or
model.get("likes7d") or 0)
# Get downloads (different possible field names)
downloads = (model.get("downloads") or
model.get("downloadsAllTime") or
model.get("downloads_all_time") or
model.get("downloads_last_month", 0))
# Get last modified date
last_modified = (model.get("lastModified") or
model.get("last_modified") or
model.get("createdAt") or
model.get("updatedAt") or "Unknown")
model_info = {
"name": model_id,
"likes": likes,
"downloads": downloads,
"updated": last_modified,
"url": f"https://huggingface.co/{model_id}"
}
category_models.append(model_info)
if category_models: # Only add if we found models
results[category] = category_models
except Exception as e:
print(f"Error fetching {category}: {str(e)}")
continue
return results
def format_number(num):
"""Format large numbers in a readable way"""
if num >= 1000000:
return f"{num/1000000:.1f}M"
elif num >= 1000:
return f"{num/1000:.1f}k"
else:
return str(num)
def format_date(date_str):
"""Format date string to be more readable"""
if date_str == "Unknown" or not date_str:
return "Unknown"
try:
# Parse the ISO date string and format it
if "T" in date_str:
date_obj = datetime.fromisoformat(date_str.replace("Z", "+00:00"))
return date_obj.strftime("%Y-%m-%d")
else:
return date_str[:10] # Just take the date part
except:
return "Unknown"
def format_model_display(models_data):
"""
Format the models data into a nice display format
"""
if not models_data:
return "No models found or API unavailable."
html_content = """
đ¤ Top 3 Hugging Face Models by Category (Last 7 Days)
"""
for category, models in models_data.items():
if not models:
continue
# Format category name
category_display = category.replace("-", " ").title()
html_content += f"""
đ {category_display}
"""
for i, model in enumerate(models[:3], 1):
medal = "đĨ" if i == 1 else "đĨ" if i == 2 else "đĨ"
# Format the numbers and date
likes_formatted = format_number(model['likes'])
downloads_formatted = format_number(model['downloads'])
date_formatted = format_date(model['updated'])
author = model['name'].split("/")[0]
model_name = model['name'].split("/")[-1]
model_normal_name = model_name.replace("-", " ").title()
# Create YouTube search URL
youtube_search_query = urllib.parse.quote(f"{model_normal_name} {author} AI")
youtube_url = f"https://www.youtube.com/results?search_query={youtube_search_query}"
html_content += f"""
{medal}
#{i}
â¤ī¸
Likes
{likes_formatted}
đĨ
Downloads
{downloads_formatted}
đ
Updated
{date_formatted}
"""
html_content += """
"""
html_content += f"""
đ Data fetched from Hugging Face API âĸ Updated: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")} UTC
Rankings based on likes received in the last 7 days âĸ Found {len(models_data)} categories with active models
"""
return html_content
def refresh_models():
"""
Refresh and get the latest model data
"""
models_data = get_hf_models_by_category()
formatted_display = format_model_display(models_data)
return formatted_display
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="đ¤ Top HF Models by Category",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1400px !important;
}
.gr-button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
}
"""
) as demo:
gr.Markdown("""
# đ¤ Hugging Face Model Explorer
Discover the most popular models across different categories on Hugging Face!
This space shows the **top 3 models** in each category ranked by **likes received in the last 7 days**.
Click the refresh button to get the latest rankings!
""")
with gr.Row():
refresh_btn = gr.Button(
"đ Refresh Rankings",
variant="primary",
size="lg"
)
with gr.Row():
gr.Markdown("""
**đ¯ What you'll see:**
- â¤ī¸ **Likes**: Community appreciation in the last 7 days
- đĨ **Downloads**: Total download count (all-time)
- đ **Updated**: Last modification date
- đ¤ **View Model**: Direct link to model page
- đē **Find on YouTube**: Search for tutorials and demos
""")
output_html = gr.HTML(
value=refresh_models(), # Load initial data
label="Top Models by Category"
)
refresh_btn.click(
fn=refresh_models,
outputs=output_html
)
gr.Markdown("""
---
### âšī¸ About This Space
- **Data Source**: Hugging Face Models API (`/api/models`)
- **Ranking Metric**: Likes received in the last 7 days (`sort=likes7d`)
- **Categories**: All major model types (text, image, audio, multimodal, etc.)
- **Update Frequency**: Real-time (when you click refresh)
**Note**: Only categories with available models are displayed. Some specialized categories might not appear if no models are currently trending.
đ **Pro tip**: Use the YouTube button to find tutorials, demos, and implementation guides for each model!
""")
return demo
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0", # For Hugging Face Spaces
server_port=7860, # Standard port for HF Spaces
share=False,
debug=False
)