from fastapi import FastAPI import os import pymupdf # PyMuPDF from pptx import Presentation from sentence_transformers import SentenceTransformer import torch from transformers import CLIPProcessor, CLIPModel from PIL import Image import chromadb import numpy as np from sklearn.decomposition import PCA app = FastAPI() # Initialize ChromaDB client = chromadb.PersistentClient(path="/data/chroma_db") collection = client.get_or_create_collection(name="knowledge_base") # File Paths pdf_file = "Sutures and Suturing techniques.pdf" pptx_file = "impalnt 1.pptx" # Initialize Embedding Models text_model = SentenceTransformer('all-MiniLM-L6-v2') model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") # Image Storage Folder IMAGE_FOLDER = "/data/extracted_images" os.makedirs(IMAGE_FOLDER, exist_ok=True) # Extract Text from PDF def extract_text_from_pdf(pdf_path): try: doc = pymupdf.open(pdf_path) text = " ".join(page.get_text() for page in doc) return text.strip() if text else None except Exception as e: print(f"Error extracting text from PDF: {e}") return None # Extract Text from PPTX def extract_text_from_pptx(pptx_path): try: prs = Presentation(pptx_path) text = " ".join( shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text") ) return text.strip() if text else None except Exception as e: print(f"Error extracting text from PPTX: {e}") return None # Extract Images from PDF def extract_images_from_pdf(pdf_path): try: doc = pymupdf.open(pdf_path) images = [] for i, page in enumerate(doc): for img_index, img in enumerate(page.get_images(full=True)): xref = img[0] image = doc.extract_image(xref) img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}" with open(img_path, "wb") as f: f.write(image["image"]) images.append(img_path) return images except Exception as e: print(f"Error extracting images from PDF: {e}") return [] # Extract Images from PPTX def extract_images_from_pptx(pptx_path): try: images = [] prs = Presentation(pptx_path) for i, slide in enumerate(prs.slides): for shape in slide.shapes: if shape.shape_type == 13: img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}" with open(img_path, "wb") as f: f.write(shape.image.blob) images.append(img_path) return images except Exception as e: print(f"Error extracting images from PPTX: {e}") return [] # Convert Text to Embeddings def get_text_embedding(text): return text_model.encode(text).tolist() # Extract Image Embeddings and Reduce to 384 Dimensions def get_image_embedding(image_path): try: image = Image.open(image_path) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): image_embedding = model.get_image_features(**inputs).numpy().flatten() # Ensure embedding is 384-dimensional if len(image_embedding) != 384: pca = PCA(n_components=384) image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten() return image_embedding.tolist() except Exception as e: print(f"Error generating image embedding: {e}") return None # Store Data in ChromaDB def store_data(texts, image_paths): for i, text in enumerate(texts): if text: text_embedding = get_text_embedding(text) if len(text_embedding) == 384: collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text]) all_embeddings = [get_image_embedding(img_path) for img_path in image_paths if get_image_embedding(img_path) is not None] if all_embeddings: all_embeddings = np.array(all_embeddings) # Apply PCA only if necessary if all_embeddings.shape[1] != 384: pca = PCA(n_components=384) all_embeddings = pca.fit_transform(all_embeddings) for j, img_path in enumerate(image_paths): collection.add(ids=[f"image_{j}"], embeddings=[all_embeddings[j].tolist()], documents=[img_path]) print("Data stored successfully!") # Process and Store from Files def process_and_store(pdf_path=None, pptx_path=None): texts, images = [], [] if pdf_path: pdf_text = extract_text_from_pdf(pdf_path) if pdf_text: texts.append(pdf_text) images.extend(extract_images_from_pdf(pdf_path)) if pptx_path: pptx_text = extract_text_from_pptx(pptx_path) if pptx_text: texts.append(pptx_text) images.extend(extract_images_from_pptx(pptx_path)) store_data(texts, images) # FastAPI Endpoints @app.get("/") def create_vector(): # Run Data Processing process_and_store(pdf_path=pdf_file, pptx_path=pptx_file) return {"Document store": "created!"} @app.get("/retrieval") def retrieval(query: str): try: query_embedding = get_text_embedding(query) results = collection.query(query_embeddings=[query_embedding], n_results=5) return {"results": results.get("documents", [])} except Exception as e: return {"error": str(e)}