import os import requests import gradio as gr import uuid import datetime from supabase import create_client, Client from supabase.lib.client_options import ClientOptions import dotenv from google.cloud import storage import json from pathlib import Path import mimetypes from workflow_handler import WanVideoWorkflow from video_config import MODEL_FRAME_RATES, calculate_frames import asyncio dotenv.load_dotenv() SCRIPT_DIR = Path(__file__).parent CONFIG_PATH = SCRIPT_DIR / "config.json" WORKFLOW_PATH = SCRIPT_DIR / "wani2v.json" loras = [ { #I suggest it to be a gif instead of an mp4! "image": "https://huggingface.co/Remade-AI/Squish/resolve/main/example_videos/tank_squish.mp4", #This is an id you can send to your backend, obviously you can change it "id": "06ce6840-f976-4963-9644-b6cf7f323f90", #This is the title that is shown on the front end "title": "Squish", "example_prompt": "In the video, a miniature rodent is presented. The rodent is held in a person's hands. The person then presses on the rodent, causing a sq41sh squish effect. The person keeps pressing down on the rodent, further showing the sq41sh squish effect.", }, { "image": "https://huggingface.co/Remade-AI/Rotate/resolve/main/example_videos/man_rotate.mp4", "id": "4ac08cfa-841e-4aa9-9022-c3fc80fb6ef4", "title": "Rotate", "example_prompt": "The video shows an elderly Asian man's head and shoulders with blurred background, performing a r0t4tion 360 degrees rotation.", }, { "image": "https://huggingface.co/Remade-AI/Cakeify/resolve/main/example_videos/timberland_cakeify.mp4", "id": "b05c1dc7-a71c-4d24-b512-4877a12dea7e", "title": "Cakeify", "example_prompt": "The video opens on a woman. A knife, held by a hand, is coming into frame and hovering over the woman. The knife then begins cutting into the woman to c4k3 cakeify it. As the knife slices the woman open, the inside of the woman is revealed to be cake with chocolate layers. The knife cuts through and the contents of the woman are revealed." }, ] # Initialize Supabase client with async support supabase: Client = create_client( os.getenv('SUPABASE_URL'), os.getenv('SUPABASE_KEY'), ) def initialize_gcs(): """Initialize Google Cloud Storage client with credentials from environment""" try: # Parse service account JSON from environment variable service_account_json = os.getenv('SERVICE_ACCOUNT_JSON') if not service_account_json: raise ValueError("SERVICE_ACCOUNT_JSON environment variable not found") credentials_info = json.loads(service_account_json) # Initialize storage client storage_client = storage.Client.from_service_account_info(credentials_info) print("Successfully initialized Google Cloud Storage client") return storage_client except Exception as e: print(f"Error initializing Google Cloud Storage: {e}") raise def upload_to_gcs(file_path, content_type=None, folder='user_uploads'): """ Uploads a file to Google Cloud Storage Args: file_path: Path to the file to upload content_type: MIME type of the file (optional) folder: Folder path in bucket (default: 'user_uploads') Returns: str: Public URL of the uploaded file """ try: bucket_name = 'remade-v2' storage_client = initialize_gcs() bucket = storage_client.bucket(bucket_name) # Get file extension and generate unique filename file_extension = Path(file_path).suffix if not content_type: content_type = mimetypes.guess_type(file_path)[0] or 'application/octet-stream' # Validate file type valid_types = ['image/jpeg', 'image/png', 'image/gif'] if content_type not in valid_types: raise ValueError("Invalid file type. Please upload a JPG, PNG or GIF image.") # Generate unique filename with proper path structure filename = f"{str(uuid.uuid4())}{file_extension}" file_path_in_gcs = f"{folder}/{filename}" # Create blob and set metadata blob = bucket.blob(file_path_in_gcs) blob.content_type = content_type blob.cache_control = 'public, max-age=31536000' print(f'Uploading file to GCS: {file_path_in_gcs}') # Upload the file blob.upload_from_filename( file_path, timeout=120 # 2 minute timeout ) # Generate public URL with correct path format image_url = f"https://storage.googleapis.com/{bucket_name}/{file_path_in_gcs}" print(f"Successfully uploaded to GCS: {image_url}") return image_url except Exception as e: print(f"Error uploading to GCS: {e}") raise ValueError(f"Failed to upload image to storage: {str(e)}") def build_lora_prompt(subject, lora_id): """ Builds a standardized prompt based on the selected LoRA and subject """ # Get LoRA config lora_config = next((lora for lora in loras if lora["id"] == lora_id), None) if not lora_config: raise ValueError(f"Invalid LoRA ID: {lora_id}") if lora_id == "06ce6840-f976-4963-9644-b6cf7f323f90": # Squish return ( f"In the video, a miniature {subject} is presented. " f"The {subject} is held in a person's hands. " f"The person then presses on the {subject}, causing a sq41sh squish effect. " f"The person keeps pressing down on the {subject}, further showing the sq41sh squish effect." ) elif lora_id == "4ac08cfa-841e-4aa9-9022-c3fc80fb6ef4": # Rotate return ( f"The video shows a {subject} performing a r0t4tion 360 degrees rotation." ) elif lora_id == "b05c1dc7-a71c-4d24-b512-4877a12dea7e": # Cakeify return ( f"The video opens on a {subject}. A knife, held by a hand, is coming into frame " f"and hovering over the {subject}. The knife then begins cutting into the {subject} " f"to c4k3 cakeify it. As the knife slices the {subject} open, the inside of the " f"{subject} is revealed to be cake with chocolate layers. The knife cuts through " f"and the contents of the {subject} are revealed." ) else: raise ValueError(f"Unknown LoRA ID: {lora_id}") def poll_generation_status(generation_id): """Poll generation status from database""" try: # Query the database for the current status response = supabase.table('generations') \ .select('*') \ .eq('generation_id', generation_id) \ .execute() if not response.data: return None return response.data[0] except Exception as e: print(f"Error polling generation status: {e}") raise e async def generate_video(input_image, subject, duration, selected_index, progress=gr.Progress()): try: # Initialize workflow handler with explicit paths workflow_handler = WanVideoWorkflow( supabase, config_path=str(CONFIG_PATH), workflow_path=str(WORKFLOW_PATH) ) # Upload image to GCS and get public URL image_url = upload_to_gcs(input_image) # Map duration selection to actual seconds duration_mapping = { "Short (3s)": 3, "Long (5s)": 5 } video_duration = duration_mapping[duration] # Get LoRA config lora_config = next((lora for lora in loras if lora["id"] == selected_index), None) if not lora_config: raise ValueError(f"Invalid LoRA ID: {selected_index}") # Generate unique ID generation_id = str(uuid.uuid4()) # Update workflow prompt = build_lora_prompt(subject, selected_index) workflow_handler.update_prompt(prompt) workflow_handler.update_input_image(image_url) await workflow_handler.update_lora(lora_config) workflow_handler.update_length(video_duration) workflow_handler.update_output_name(generation_id) # Get final workflow workflow = workflow_handler.get_workflow() # Store generation data in Supabase generation_data = { "generation_id": generation_id, "user_id": "anonymous", "status": "queued", "progress": 0, "worker_id": None, "created_at": datetime.datetime.utcnow().isoformat(), "message": { "generationId": generation_id, "workflow": { "prompt": workflow } }, "metadata": { "prompt": { "original": subject, "enhanced": subject }, "lora": { "id": selected_index, "strength": 1.0, "name": lora_config["title"] }, "workflow": "img2vid", "dimensions": None, "input_image_url": image_url, "video_length": {"duration": video_duration}, }, "error": None, "output_url": None, "batch_id": None, "platform": "huggingface" } # Remove await - the execute() method returns the response directly response = supabase.table('generations').insert(generation_data).execute() print(f"Stored generation data with ID: {generation_id}") # Return generation ID for tracking return generation_id except Exception as e: print(f"Error in generate_video: {e}") raise e def update_selection(evt: gr.SelectData): selected_lora = loras[evt.index] sentence = f"Selected LoRA: {selected_lora['title']}" return selected_lora['id'], sentence async def handle_generation(input_image, subject, duration, selected_index, progress=gr.Progress(track_tqdm=True)): try: if selected_index is None: raise gr.Error("You must select a LoRA before proceeding.") # Generate the video and get generation ID generation_id = await generate_video(input_image, subject, duration, selected_index) # Poll for status updates while True: generation = poll_generation_status(generation_id) if not generation: raise ValueError(f"Generation {generation_id} not found") # Update progress if 'progress' in generation: progress_value = generation['progress'] progress_bar = f'