File size: 8,693 Bytes
88d59c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6a45ee
88d59c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import gradio as gr
import pickle
import tensorflow as tf
import keras.ops as ops
import keras
from keras import layers
from keras.layers import TextVectorization


# from gradio_webrtc import WebRTC
@keras.saving.register_keras_serializable()
class TextVectorization(keras.layers.TextVectorization):
    pass
@keras.saving.register_keras_serializable()
class StringLookup(keras.layers.StringLookup):
    pass
@keras.saving.register_keras_serializable(package="Transformer")
class TransformerEncoder(layers.Layer):
    def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.num_heads = num_heads
        self.attention = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.dense_proj = keras.Sequential(
            [
                layers.Dense(dense_dim, activation="relu"),
                layers.Dense(embed_dim),
            ]
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.supports_masking = True

    def call(self, inputs, mask=None):
        if mask is not None:
            padding_mask = ops.cast(mask[:, None, :], dtype="int32")
        else:
            padding_mask = None

        attention_output = self.attention(
            query=inputs, value=inputs, key=inputs, attention_mask=padding_mask
        )
        proj_input = self.layernorm_1(inputs + attention_output)
        proj_output = self.dense_proj(proj_input)
        return self.layernorm_2(proj_input + proj_output)

    def get_config(self):
        config = super().get_config()
        config.update(
            {
                "embed_dim": self.embed_dim,
                "dense_dim": self.dense_dim,
                "num_heads": self.num_heads,
            }
        )
        return config
@keras.saving.register_keras_serializable(package="Transformer")
class PositionalEmbedding(layers.Layer):
    def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
        super().__init__(**kwargs)
        self.token_embeddings = layers.Embedding(
            input_dim=vocab_size, output_dim=embed_dim
        )
        self.position_embeddings = layers.Embedding(
            input_dim=sequence_length, output_dim=embed_dim
        )
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.embed_dim = embed_dim

    def call(self, inputs):
        length = ops.shape(inputs)[-1]
        positions = ops.arange(0, length, 1)
        embedded_tokens = self.token_embeddings(inputs)
        embedded_positions = self.position_embeddings(positions)
        return embedded_tokens + embedded_positions

    def compute_mask(self, inputs, mask=None):
        return ops.not_equal(inputs, 0)

    def get_config(self):
        config = super().get_config()
        config.update(
            {
                "sequence_length": self.sequence_length,
                "vocab_size": self.vocab_size,
                "embed_dim": self.embed_dim,
            }
        )
        return config
@keras.saving.register_keras_serializable(package="Transformer")
class TransformerDecoder(layers.Layer):
    def __init__(self, embed_dim, latent_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.latent_dim = latent_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.attention_2 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.dense_proj = keras.Sequential(
            [
                layers.Dense(latent_dim, activation="relu"),
                layers.Dense(embed_dim),
            ]
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.layernorm_3 = layers.LayerNormalization()
        self.supports_masking = True

    def call(self, inputs, mask=None):
        inputs, encoder_outputs = inputs
        causal_mask = self.get_causal_attention_mask(inputs)

        if mask is None:
            inputs_padding_mask, encoder_outputs_padding_mask = None, None
        else:
            inputs_padding_mask, encoder_outputs_padding_mask = mask

        attention_output_1 = self.attention_1(
            query=inputs,
            value=inputs,
            key=inputs,
            attention_mask=causal_mask,
            query_mask=inputs_padding_mask,
        )
        out_1 = self.layernorm_1(inputs + attention_output_1)

        attention_output_2 = self.attention_2(
            query=out_1,
            value=encoder_outputs,
            key=encoder_outputs,
            query_mask=inputs_padding_mask,
            key_mask=encoder_outputs_padding_mask,
        )
        out_2 = self.layernorm_2(out_1 + attention_output_2)

        proj_output = self.dense_proj(out_2)
        return self.layernorm_3(out_2 + proj_output)

    def get_causal_attention_mask(self, inputs):
        input_shape = ops.shape(inputs)
        batch_size, sequence_length = input_shape[0], input_shape[1]
        i = ops.arange(sequence_length)[:, None]
        j = ops.arange(sequence_length)
        mask = ops.cast(i >= j, dtype="int32")
        mask = ops.reshape(mask, (1, input_shape[1], input_shape[1]))
        mult = ops.concatenate(
            [ops.expand_dims(batch_size, -1), ops.convert_to_tensor([1, 1])],
            axis=0,
        )
        return ops.tile(mask, mult)

    def get_config(self):
        config = super().get_config()
        config.update(
            {
                "embed_dim": self.embed_dim,
                "latent_dim": self.latent_dim,
                "num_heads": self.num_heads,
            }
        )
        return config

with open("id_vectorization_transformer.pickle", "rb") as file:
    from_disk = pickle.load(file)
    id_vectorization = TextVectorization.from_config(from_disk['config'])
    id_vectorization.adapt(tf.data.Dataset.from_tensor_slices(["xyz"]))
    id_vectorization.set_weights(from_disk['weights'])
    id_vectorization.set_vocabulary(from_disk["vocab"])
with open("en_vectorization_transformer.pickle", "rb") as file:
    from_disk = pickle.load(file)
    en_vectorization = TextVectorization.from_config(from_disk['config'])
    en_vectorization.adapt(tf.data.Dataset.from_tensor_slices(["xyz"]))
    en_vectorization.set_weights(from_disk['weights'])
    en_vectorization.set_vocabulary(from_disk["vocab"])

    
transformer = keras.models.load_model(
    "transformer_keras.keras",
        custom_objects={"TransformerEncoder": TransformerEncoder, "TransformerDecoder": TransformerDecoder, "PositionalEmbedding": PositionalEmbedding}
)

    
id_vocab = id_vectorization.get_vocabulary()
id_index_lookup = dict(zip(range(len(id_vocab)), id_vocab))
max_decoded_sentence_lenth = 20

def decode_sequence(input_sentence):
    tokenized_input_sentence = en_vectorization([input_sentence])
    decoded_sentence = "[start]"
    for i in range(max_decoded_sentence_lenth):
        tokenized_target_sentence = id_vectorization([decoded_sentence])[:, :-1]
        predictions = transformer(
            {
                "encoder_inputs": tokenized_input_sentence,
                "decoder_inputs": tokenized_target_sentence,
            }
        )

        sampled_token_index = ops.convert_to_numpy(
            ops.argmax(predictions[0, i, :])
        ).item(0)
        sampled_token = id_index_lookup[sampled_token_index]
        decoded_sentence += " " + sampled_token
        if sampled_token == "end":
            break
    return decoded_sentence.replace("[start]", "").replace("end", "").lstrip().rstrip()

# image = WebRTC(label="Stream")

desc=("<h2>This is a simple English to Indonesian translator app using transformer for our final Deep Learning Project.</h2>" +
        "<br/> <h3 style='font-weight: bold'>Team Members:</h3>"+
        "<br/> <ul> <li>2602082452 - Rendy Susanto</li>" +
        "<li>2602082452 - Rendy Susanto</li></ul>")

demo = gr.Interface(
    fn=decode_sequence,
    inputs=gr.Textbox(label="Please input your text (English):"),
    outputs=gr.Textbox(label="Output (Indonesian):"),
    title="English To Indonesian Translator",
    description=desc
)

demo.launch(share=True)