Zihan428's picture
Clean multilingual TTS repo
f79db70
"""mel-spectrogram extraction in Matcha-TTS"""
import logging
from librosa.filters import mel as librosa_mel_fn
import torch
import numpy as np
logger = logging.getLogger(__name__)
# NOTE: they decalred these global vars
mel_basis = {}
hann_window = {}
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
"""
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
n_fft: 1920
num_mels: 80
sampling_rate: 24000
hop_size: 480
win_size: 1920
fmin: 0
fmax: 8000
center: False
"""
def mel_spectrogram(y, n_fft=1920, num_mels=80, sampling_rate=24000, hop_size=480, win_size=1920,
fmin=0, fmax=8000, center=False):
"""Copied from https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/utils/audio.py
Set default values according to Cosyvoice's config.
"""
if isinstance(y, np.ndarray):
y = torch.tensor(y).float()
if len(y.shape) == 1:
y = y[None, ]
# Debug: Check for audio clipping (values outside [-1.0, 1.0] range)
min_val = torch.min(y)
max_val = torch.max(y)
if min_val < -1.0 or max_val > 1.0:
logger.warning(f"Audio values outside normalized range: min={min_val.item():.4f}, max={max_val.item():.4f}")
global mel_basis, hann_window # pylint: disable=global-statement,global-variable-not-assigned
if f"{str(fmax)}_{str(y.device)}" not in mel_basis:
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
)
y = y.squeeze(1)
spec = torch.view_as_real(
torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[str(y.device)],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
spec = spectral_normalize_torch(spec)
return spec