Zihan428's picture
Update src/chatterbox/models/tokenizers/tokenizer.py
ab79902 verified
import logging
import json
import re
import torch
from pathlib import Path
from unicodedata import category
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
# Special tokens
SOT = "[START]"
EOT = "[STOP]"
UNK = "[UNK]"
SPACE = "[SPACE]"
SPECIAL_TOKENS = [SOT, EOT, UNK, SPACE, "[PAD]", "[SEP]", "[CLS]", "[MASK]"]
logger = logging.getLogger(__name__)
class EnTokenizer:
def __init__(self, vocab_file_path):
self.tokenizer: Tokenizer = Tokenizer.from_file(vocab_file_path)
self.check_vocabset_sot_eot()
def check_vocabset_sot_eot(self):
voc = self.tokenizer.get_vocab()
assert SOT in voc
assert EOT in voc
def text_to_tokens(self, text: str):
text_tokens = self.encode(text)
text_tokens = torch.IntTensor(text_tokens).unsqueeze(0)
return text_tokens
def encode( self, txt: str, verbose=False):
"""
clean_text > (append `lang_id`) > replace SPACE > encode text using Tokenizer
"""
txt = txt.replace(' ', SPACE)
code = self.tokenizer.encode(txt)
ids = code.ids
return ids
def decode(self, seq):
if isinstance(seq, torch.Tensor):
seq = seq.cpu().numpy()
txt: str = self.tokenizer.decode(seq,
skip_special_tokens=False)
txt = txt.replace(' ', '')
txt = txt.replace(SPACE, ' ')
txt = txt.replace(EOT, '')
txt = txt.replace(UNK, '')
return txt
# Model repository
REPO_ID = "ResembleAI/chatterbox"
# Global instances for optional dependencies
_kakasi = None
_dicta = None
def is_kanji(c: str) -> bool:
"""Check if character is kanji."""
return 19968 <= ord(c) <= 40959
def is_katakana(c: str) -> bool:
"""Check if character is katakana."""
return 12449 <= ord(c) <= 12538
def hiragana_normalize(text: str) -> str:
"""Japanese text normalization: converts kanji to hiragana; katakana remains the same."""
global _kakasi
try:
if _kakasi is None:
import pykakasi
_kakasi = pykakasi.kakasi()
result = _kakasi.convert(text)
out = []
for r in result:
inp = r['orig']
hira = r["hira"]
# Any kanji in the phrase
if any([is_kanji(c) for c in inp]):
if hira and hira[0] in ["は", "へ"]: # Safety check for empty hira
hira = " " + hira
out.append(hira)
# All katakana
elif all([is_katakana(c) for c in inp]) if inp else False: # Safety check for empty inp
out.append(r['orig'])
else:
out.append(inp)
normalized_text = "".join(out)
# Decompose Japanese characters for tokenizer compatibility
import unicodedata
normalized_text = unicodedata.normalize('NFKD', normalized_text)
return normalized_text
except ImportError:
logger.warning("pykakasi not available - Japanese text processing skipped")
return text
def add_hebrew_diacritics(text: str) -> str:
"""Hebrew text normalization: adds diacritics to Hebrew text."""
global _dicta
try:
if _dicta is None:
from dicta_onnx import Dicta
_dicta = Dicta()
return _dicta.add_diacritics(text)
except ImportError:
logger.warning("dicta_onnx not available - Hebrew text processing skipped")
return text
except Exception as e:
logger.warning(f"Hebrew diacritization failed: {e}")
return text
def korean_normalize(text: str) -> str:
"""Korean text normalization: decompose syllables into Jamo for tokenization."""
def decompose_hangul(char):
"""Decompose Korean syllable into Jamo components."""
if not ('\uac00' <= char <= '\ud7af'):
return char
# Hangul decomposition formula
base = ord(char) - 0xAC00
initial = chr(0x1100 + base // (21 * 28))
medial = chr(0x1161 + (base % (21 * 28)) // 28)
final = chr(0x11A7 + base % 28) if base % 28 > 0 else ''
return initial + medial + final
# Decompose syllables and normalize punctuation
result = ''.join(decompose_hangul(char) for char in text)
return result.strip()
class ChineseCangjieConverter:
"""Converts Chinese characters to Cangjie codes for tokenization."""
def __init__(self, model_dir=None):
self.word2cj = {}
self.cj2word = {}
self.segmenter = None
self._load_cangjie_mapping(model_dir)
self._init_segmenter()
def _load_cangjie_mapping(self, model_dir=None):
"""Load Cangjie mapping from HuggingFace model repository."""
try:
cangjie_file = hf_hub_download(
repo_id=REPO_ID,
filename="Cangjie5_TC.json",
cache_dir=model_dir
)
with open(cangjie_file, "r", encoding="utf-8") as fp:
data = json.load(fp)
for entry in data:
word, code = entry.split("\t")[:2]
self.word2cj[word] = code
if code not in self.cj2word:
self.cj2word[code] = [word]
else:
self.cj2word[code].append(word)
except Exception as e:
logger.warning(f"Could not load Cangjie mapping: {e}")
def _init_segmenter(self):
"""Initialize pkuseg segmenter."""
try:
from pkuseg import pkuseg
self.segmenter = pkuseg()
except ImportError:
logger.warning("pkuseg not available - Chinese segmentation will be skipped")
self.segmenter = None
def _cangjie_encode(self, glyph: str):
"""Encode a single Chinese glyph to Cangjie code."""
normed_glyph = glyph
code = self.word2cj.get(normed_glyph, None)
if code is None: # e.g. Japanese hiragana
return None
index = self.cj2word[code].index(normed_glyph)
index = str(index) if index > 0 else ""
return code + str(index)
def __call__(self, text):
"""Convert Chinese characters in text to Cangjie tokens."""
output = []
if self.segmenter is not None:
segmented_words = self.segmenter.cut(text)
full_text = " ".join(segmented_words)
else:
full_text = text
for t in full_text:
if category(t) == "Lo":
cangjie = self._cangjie_encode(t)
if cangjie is None:
output.append(t)
continue
code = []
for c in cangjie:
code.append(f"[cj_{c}]")
code.append("[cj_.]")
code = "".join(code)
output.append(code)
else:
output.append(t)
return "".join(output)
class MTLTokenizer:
def __init__(self, vocab_file_path):
self.tokenizer: Tokenizer = Tokenizer.from_file(vocab_file_path)
model_dir = Path(vocab_file_path).parent
self.cangjie_converter = ChineseCangjieConverter(model_dir)
self.check_vocabset_sot_eot()
def check_vocabset_sot_eot(self):
voc = self.tokenizer.get_vocab()
assert SOT in voc
assert EOT in voc
def text_to_tokens(self, text: str, language_id: str = None):
text_tokens = self.encode(text, language_id=language_id)
text_tokens = torch.IntTensor(text_tokens).unsqueeze(0)
return text_tokens
def encode(self, txt: str, language_id: str = None):
# Language-specific text processing
if language_id == 'zh':
txt = self.cangjie_converter(txt)
elif language_id == 'ja':
txt = hiragana_normalize(txt)
elif language_id == 'he':
txt = add_hebrew_diacritics(txt)
elif language_id == 'ko':
txt = korean_normalize(txt)
# Prepend language token
if language_id:
txt = f"[{language_id.lower()}]{txt}"
txt = txt.replace(' ', SPACE)
return self.tokenizer.encode(txt).ids
def decode(self, seq):
if isinstance(seq, torch.Tensor):
seq = seq.cpu().numpy()
txt = self.tokenizer.decode(seq, skip_special_tokens=False)
txt = txt.replace(' ', '').replace(SPACE, ' ').replace(EOT, '').replace(UNK, '')
return txt