Spaces:
Runtime error
Runtime error
Duplicate from TLME/VITS-TTS-AzurLane
Browse filesCo-authored-by: Lethe_End <TLME@users.noreply.huggingface.co>
- .gitattributes +35 -0
- README.md +14 -0
- app.py +171 -0
- attentions.py +303 -0
- commons.py +164 -0
- mel_processing.py +112 -0
- model/D_latest.pth +3 -0
- model/G_latest.pth +3 -0
- model/config.json +775 -0
- models.py +533 -0
- modules.py +390 -0
- monotonic_align/__init__.py +21 -0
- monotonic_align/core.py +36 -0
- requirements.txt +23 -0
- text/LICENSE +19 -0
- text/__init__.py +60 -0
- text/__pycache__/__init__.cpython-37.pyc +0 -0
- text/__pycache__/__init__.cpython-38.pyc +0 -0
- text/__pycache__/cleaners.cpython-37.pyc +0 -0
- text/__pycache__/cleaners.cpython-38.pyc +0 -0
- text/__pycache__/english.cpython-37.pyc +0 -0
- text/__pycache__/english.cpython-38.pyc +0 -0
- text/__pycache__/japanese.cpython-37.pyc +0 -0
- text/__pycache__/japanese.cpython-38.pyc +0 -0
- text/__pycache__/korean.cpython-37.pyc +0 -0
- text/__pycache__/korean.cpython-38.pyc +0 -0
- text/__pycache__/mandarin.cpython-37.pyc +0 -0
- text/__pycache__/mandarin.cpython-38.pyc +0 -0
- text/__pycache__/sanskrit.cpython-37.pyc +0 -0
- text/__pycache__/sanskrit.cpython-38.pyc +0 -0
- text/__pycache__/symbols.cpython-37.pyc +0 -0
- text/__pycache__/symbols.cpython-38.pyc +0 -0
- text/__pycache__/thai.cpython-37.pyc +0 -0
- text/__pycache__/thai.cpython-38.pyc +0 -0
- text/cantonese.py +59 -0
- text/cleaners.py +129 -0
- text/english.py +188 -0
- text/japanese.py +153 -0
- text/korean.py +210 -0
- text/mandarin.py +326 -0
- text/ngu_dialect.py +30 -0
- text/sanskrit.py +62 -0
- text/shanghainese.py +64 -0
- text/symbols.py +76 -0
- text/thai.py +44 -0
- transforms.py +193 -0
- utils.py +434 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: VITS TTS Azur Lane
|
| 3 |
+
emoji: 🎙️⚓
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.36.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
duplicated_from: TLME/VITS-TTS-AzurLane
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torch import no_grad, LongTensor
|
| 5 |
+
import argparse
|
| 6 |
+
import commons
|
| 7 |
+
from mel_processing import spectrogram_torch
|
| 8 |
+
import utils
|
| 9 |
+
from models import SynthesizerTrn
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import librosa
|
| 12 |
+
import re
|
| 13 |
+
|
| 14 |
+
from text import text_to_sequence, _clean_text
|
| 15 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
import logging
|
| 17 |
+
logging.getLogger("PIL").setLevel(logging.WARNING)
|
| 18 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
| 19 |
+
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
| 20 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
| 21 |
+
logging.getLogger("asyncio").setLevel(logging.WARNING)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
| 25 |
+
limitation= True
|
| 26 |
+
|
| 27 |
+
language_marks = {
|
| 28 |
+
"Japanese": "",
|
| 29 |
+
"日本語": "[JA]",
|
| 30 |
+
"简体中文": "[ZH]",
|
| 31 |
+
"English": "[EN]",
|
| 32 |
+
"Mix": "",
|
| 33 |
+
}
|
| 34 |
+
lang = ['日本語', '简体中文', 'Mix']
|
| 35 |
+
def get_text(text, hps, is_symbol):
|
| 36 |
+
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
| 37 |
+
if hps.data.add_blank:
|
| 38 |
+
text_norm = commons.intersperse(text_norm, 0)
|
| 39 |
+
text_norm = LongTensor(text_norm)
|
| 40 |
+
return text_norm
|
| 41 |
+
|
| 42 |
+
def create_tts_fn(model, hps, speaker_ids):
|
| 43 |
+
def tts_fn(text, speaker, language, speed,is_symbol):
|
| 44 |
+
|
| 45 |
+
if limitation:
|
| 46 |
+
text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
|
| 47 |
+
max_len = 100
|
| 48 |
+
if is_symbol:
|
| 49 |
+
max_len *= 3
|
| 50 |
+
if text_len > max_len:
|
| 51 |
+
return "Error: Text is too long", None
|
| 52 |
+
if language is not None:
|
| 53 |
+
text = language_marks[language] + text + language_marks[language]
|
| 54 |
+
speaker_id = speaker_ids[speaker]
|
| 55 |
+
stn_tst = get_text(text, hps, False)
|
| 56 |
+
with no_grad():
|
| 57 |
+
x_tst = stn_tst.unsqueeze(0).to(device)
|
| 58 |
+
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
|
| 59 |
+
sid = LongTensor([speaker_id]).to(device)
|
| 60 |
+
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
|
| 61 |
+
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
| 62 |
+
del stn_tst, x_tst, x_tst_lengths, sid
|
| 63 |
+
return "Success", (hps.data.sampling_rate, audio)
|
| 64 |
+
|
| 65 |
+
return tts_fn
|
| 66 |
+
|
| 67 |
+
def create_vc_fn(model, hps, speaker_ids):
|
| 68 |
+
def vc_fn(original_speaker, target_speaker, record_audio, upload_audio):
|
| 69 |
+
input_audio = record_audio if record_audio is not None else upload_audio
|
| 70 |
+
if input_audio is None:
|
| 71 |
+
return "You need to record or upload an audio", None
|
| 72 |
+
sampling_rate, audio = input_audio
|
| 73 |
+
duration = audio.shape[0] / sampling_rate
|
| 74 |
+
if limitation and duration > 20:
|
| 75 |
+
return "Error: Audio is too long", None
|
| 76 |
+
original_speaker_id = speaker_ids[original_speaker]
|
| 77 |
+
target_speaker_id = speaker_ids[target_speaker]
|
| 78 |
+
|
| 79 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
| 80 |
+
if len(audio.shape) > 1:
|
| 81 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
| 82 |
+
if sampling_rate != hps.data.sampling_rate:
|
| 83 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
|
| 84 |
+
with no_grad():
|
| 85 |
+
y = torch.FloatTensor(audio)
|
| 86 |
+
y = y / max(-y.min(), y.max()) / 0.99
|
| 87 |
+
y = y.to(device)
|
| 88 |
+
y = y.unsqueeze(0)
|
| 89 |
+
spec = spectrogram_torch(y, hps.data.filter_length,
|
| 90 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
| 91 |
+
center=False).to(device)
|
| 92 |
+
spec_lengths = LongTensor([spec.size(-1)]).to(device)
|
| 93 |
+
sid_src = LongTensor([original_speaker_id]).to(device)
|
| 94 |
+
sid_tgt = LongTensor([target_speaker_id]).to(device)
|
| 95 |
+
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
| 96 |
+
0, 0].data.cpu().float().numpy()
|
| 97 |
+
del y, spec, spec_lengths, sid_src, sid_tgt
|
| 98 |
+
return "Success", (hps.data.sampling_rate, audio)
|
| 99 |
+
|
| 100 |
+
return vc_fn
|
| 101 |
+
if __name__ == "__main__":
|
| 102 |
+
parser = argparse.ArgumentParser()
|
| 103 |
+
parser.add_argument('--device', type=str, default='cpu')
|
| 104 |
+
parser.add_argument("--model_dir", default="./model/G_latest.pth", help="directory to your fine-tuned model")
|
| 105 |
+
parser.add_argument("--config_dir", default="./model/config.json", help="directory to your model config file")
|
| 106 |
+
parser.add_argument("--share", default=False, help="make link public (used in colab)")
|
| 107 |
+
|
| 108 |
+
args = parser.parse_args()
|
| 109 |
+
hps = utils.get_hparams_from_file(args.config_dir)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
net_g = SynthesizerTrn(
|
| 113 |
+
len(hps.symbols),
|
| 114 |
+
hps.data.filter_length // 2 + 1,
|
| 115 |
+
hps.train.segment_size // hps.data.hop_length,
|
| 116 |
+
n_speakers=hps.data.n_speakers,
|
| 117 |
+
**hps.model).to(device)
|
| 118 |
+
_ = net_g.eval()
|
| 119 |
+
|
| 120 |
+
_ = utils.load_checkpoint(args.model_dir, net_g, None)
|
| 121 |
+
speaker_ids = hps.speakers
|
| 122 |
+
speakers = list(hps.speakers.keys())
|
| 123 |
+
tts_fn = create_tts_fn(net_g, hps, speaker_ids)
|
| 124 |
+
vc_fn = create_vc_fn(net_g, hps, speaker_ids)
|
| 125 |
+
app = gr.Blocks()
|
| 126 |
+
with app:
|
| 127 |
+
gr.Markdown("<b><span style='font-size: 30px;'>{}</span></b>".format("Azur Lane VITS-TTS Model\n\n\n\n"))
|
| 128 |
+
gr.Markdown( "<b><span style='font-size: 20px;'>{}</span></b>".format("请不要将此模型用于商业使用!作者不对你使用本模型所导致的任何后果负责!请在合理的范围内使用该模型!\n\n"))
|
| 129 |
+
gr.Markdown("使用碧蓝航线全角色语音训练,数据集截止2023/7/1。可以说日语和中文,但由于中文数据集不多,效果可能并不好。\n\n"
|
| 130 |
+
"角色列表请参照: https://algwiki.moe/shiplist.html \n\n"
|
| 131 |
+
"language使用MIX时请用对应的语言标记包裹句子。(日文:[JA] 中文[ZH])\n\n"
|
| 132 |
+
"举例:[ZH]你好[ZH],[JA]こんにちわ[JA]"
|
| 133 |
+
"数据集开源: https://huggingface.co/datasets/TLME/AzurLane-voice-transcription"
|
| 134 |
+
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
with gr.Tab("Text-to-Speech"):
|
| 138 |
+
with gr.Row():
|
| 139 |
+
with gr.Column():
|
| 140 |
+
textbox = gr.TextArea(label="Text",
|
| 141 |
+
placeholder="Type your sentence here",
|
| 142 |
+
value="こんにちわ。", elem_id=f"tts-input")
|
| 143 |
+
# select character
|
| 144 |
+
char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character')
|
| 145 |
+
language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language')
|
| 146 |
+
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1,
|
| 147 |
+
label='速度 Speed')
|
| 148 |
+
with gr.Column():
|
| 149 |
+
text_output = gr.Textbox(label="Message")
|
| 150 |
+
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
|
| 151 |
+
btn = gr.Button("Generate!")
|
| 152 |
+
btn.click(tts_fn,
|
| 153 |
+
inputs=[textbox, char_dropdown, language_dropdown, duration_slider,],
|
| 154 |
+
outputs=[text_output, audio_output])
|
| 155 |
+
with gr.Tab("Voice Conversion"):
|
| 156 |
+
gr.Markdown("""
|
| 157 |
+
Record or upload audio, and select the speaker ID.
|
| 158 |
+
""")
|
| 159 |
+
with gr.Column():
|
| 160 |
+
record_audio = gr.Audio(label="record your voice", source="microphone")
|
| 161 |
+
upload_audio = gr.Audio(label="or upload audio here", source="upload")
|
| 162 |
+
source_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="source speaker")
|
| 163 |
+
target_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="target speaker")
|
| 164 |
+
with gr.Column():
|
| 165 |
+
message_box = gr.Textbox(label="Message")
|
| 166 |
+
converted_audio = gr.Audio(label='converted audio')
|
| 167 |
+
btn = gr.Button("Convert!")
|
| 168 |
+
btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
|
| 169 |
+
outputs=[message_box, converted_audio])
|
| 170 |
+
app.queue(concurrency_count=3).launch(show_api=False, share=args.share)
|
| 171 |
+
|
attentions.py
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
|
| 8 |
+
import commons
|
| 9 |
+
import modules
|
| 10 |
+
from modules import LayerNorm
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Encoder(nn.Module):
|
| 14 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.hidden_channels = hidden_channels
|
| 17 |
+
self.filter_channels = filter_channels
|
| 18 |
+
self.n_heads = n_heads
|
| 19 |
+
self.n_layers = n_layers
|
| 20 |
+
self.kernel_size = kernel_size
|
| 21 |
+
self.p_dropout = p_dropout
|
| 22 |
+
self.window_size = window_size
|
| 23 |
+
|
| 24 |
+
self.drop = nn.Dropout(p_dropout)
|
| 25 |
+
self.attn_layers = nn.ModuleList()
|
| 26 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 27 |
+
self.ffn_layers = nn.ModuleList()
|
| 28 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 29 |
+
for i in range(self.n_layers):
|
| 30 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
| 31 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 32 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
| 33 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 34 |
+
|
| 35 |
+
def forward(self, x, x_mask):
|
| 36 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 37 |
+
x = x * x_mask
|
| 38 |
+
for i in range(self.n_layers):
|
| 39 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
| 40 |
+
y = self.drop(y)
|
| 41 |
+
x = self.norm_layers_1[i](x + y)
|
| 42 |
+
|
| 43 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 44 |
+
y = self.drop(y)
|
| 45 |
+
x = self.norm_layers_2[i](x + y)
|
| 46 |
+
x = x * x_mask
|
| 47 |
+
return x
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class Decoder(nn.Module):
|
| 51 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.hidden_channels = hidden_channels
|
| 54 |
+
self.filter_channels = filter_channels
|
| 55 |
+
self.n_heads = n_heads
|
| 56 |
+
self.n_layers = n_layers
|
| 57 |
+
self.kernel_size = kernel_size
|
| 58 |
+
self.p_dropout = p_dropout
|
| 59 |
+
self.proximal_bias = proximal_bias
|
| 60 |
+
self.proximal_init = proximal_init
|
| 61 |
+
|
| 62 |
+
self.drop = nn.Dropout(p_dropout)
|
| 63 |
+
self.self_attn_layers = nn.ModuleList()
|
| 64 |
+
self.norm_layers_0 = nn.ModuleList()
|
| 65 |
+
self.encdec_attn_layers = nn.ModuleList()
|
| 66 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 67 |
+
self.ffn_layers = nn.ModuleList()
|
| 68 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 69 |
+
for i in range(self.n_layers):
|
| 70 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
| 71 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
| 72 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
| 73 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 74 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
| 75 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 76 |
+
|
| 77 |
+
def forward(self, x, x_mask, h, h_mask):
|
| 78 |
+
"""
|
| 79 |
+
x: decoder input
|
| 80 |
+
h: encoder output
|
| 81 |
+
"""
|
| 82 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
| 83 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 84 |
+
x = x * x_mask
|
| 85 |
+
for i in range(self.n_layers):
|
| 86 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
| 87 |
+
y = self.drop(y)
|
| 88 |
+
x = self.norm_layers_0[i](x + y)
|
| 89 |
+
|
| 90 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
| 91 |
+
y = self.drop(y)
|
| 92 |
+
x = self.norm_layers_1[i](x + y)
|
| 93 |
+
|
| 94 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 95 |
+
y = self.drop(y)
|
| 96 |
+
x = self.norm_layers_2[i](x + y)
|
| 97 |
+
x = x * x_mask
|
| 98 |
+
return x
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class MultiHeadAttention(nn.Module):
|
| 102 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
| 103 |
+
super().__init__()
|
| 104 |
+
assert channels % n_heads == 0
|
| 105 |
+
|
| 106 |
+
self.channels = channels
|
| 107 |
+
self.out_channels = out_channels
|
| 108 |
+
self.n_heads = n_heads
|
| 109 |
+
self.p_dropout = p_dropout
|
| 110 |
+
self.window_size = window_size
|
| 111 |
+
self.heads_share = heads_share
|
| 112 |
+
self.block_length = block_length
|
| 113 |
+
self.proximal_bias = proximal_bias
|
| 114 |
+
self.proximal_init = proximal_init
|
| 115 |
+
self.attn = None
|
| 116 |
+
|
| 117 |
+
self.k_channels = channels // n_heads
|
| 118 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
| 119 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
| 120 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
| 121 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
| 122 |
+
self.drop = nn.Dropout(p_dropout)
|
| 123 |
+
|
| 124 |
+
if window_size is not None:
|
| 125 |
+
n_heads_rel = 1 if heads_share else n_heads
|
| 126 |
+
rel_stddev = self.k_channels**-0.5
|
| 127 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
| 128 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
| 129 |
+
|
| 130 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
| 131 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
| 132 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
| 133 |
+
if proximal_init:
|
| 134 |
+
with torch.no_grad():
|
| 135 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
| 136 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
| 137 |
+
|
| 138 |
+
def forward(self, x, c, attn_mask=None):
|
| 139 |
+
q = self.conv_q(x)
|
| 140 |
+
k = self.conv_k(c)
|
| 141 |
+
v = self.conv_v(c)
|
| 142 |
+
|
| 143 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
| 144 |
+
|
| 145 |
+
x = self.conv_o(x)
|
| 146 |
+
return x
|
| 147 |
+
|
| 148 |
+
def attention(self, query, key, value, mask=None):
|
| 149 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
| 150 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
| 151 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
| 152 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 153 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 154 |
+
|
| 155 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
| 156 |
+
if self.window_size is not None:
|
| 157 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
| 158 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
| 159 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
| 160 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
| 161 |
+
scores = scores + scores_local
|
| 162 |
+
if self.proximal_bias:
|
| 163 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
| 164 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
| 165 |
+
if mask is not None:
|
| 166 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
| 167 |
+
if self.block_length is not None:
|
| 168 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
| 169 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
| 170 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
| 171 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
| 172 |
+
p_attn = self.drop(p_attn)
|
| 173 |
+
output = torch.matmul(p_attn, value)
|
| 174 |
+
if self.window_size is not None:
|
| 175 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
| 176 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
| 177 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
| 178 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
| 179 |
+
return output, p_attn
|
| 180 |
+
|
| 181 |
+
def _matmul_with_relative_values(self, x, y):
|
| 182 |
+
"""
|
| 183 |
+
x: [b, h, l, m]
|
| 184 |
+
y: [h or 1, m, d]
|
| 185 |
+
ret: [b, h, l, d]
|
| 186 |
+
"""
|
| 187 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
| 188 |
+
return ret
|
| 189 |
+
|
| 190 |
+
def _matmul_with_relative_keys(self, x, y):
|
| 191 |
+
"""
|
| 192 |
+
x: [b, h, l, d]
|
| 193 |
+
y: [h or 1, m, d]
|
| 194 |
+
ret: [b, h, l, m]
|
| 195 |
+
"""
|
| 196 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
| 197 |
+
return ret
|
| 198 |
+
|
| 199 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
| 200 |
+
max_relative_position = 2 * self.window_size + 1
|
| 201 |
+
# Pad first before slice to avoid using cond ops.
|
| 202 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
| 203 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
| 204 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
| 205 |
+
if pad_length > 0:
|
| 206 |
+
padded_relative_embeddings = F.pad(
|
| 207 |
+
relative_embeddings,
|
| 208 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
| 209 |
+
else:
|
| 210 |
+
padded_relative_embeddings = relative_embeddings
|
| 211 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
| 212 |
+
return used_relative_embeddings
|
| 213 |
+
|
| 214 |
+
def _relative_position_to_absolute_position(self, x):
|
| 215 |
+
"""
|
| 216 |
+
x: [b, h, l, 2*l-1]
|
| 217 |
+
ret: [b, h, l, l]
|
| 218 |
+
"""
|
| 219 |
+
batch, heads, length, _ = x.size()
|
| 220 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
| 221 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
| 222 |
+
|
| 223 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
| 224 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
| 225 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
| 226 |
+
|
| 227 |
+
# Reshape and slice out the padded elements.
|
| 228 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
| 229 |
+
return x_final
|
| 230 |
+
|
| 231 |
+
def _absolute_position_to_relative_position(self, x):
|
| 232 |
+
"""
|
| 233 |
+
x: [b, h, l, l]
|
| 234 |
+
ret: [b, h, l, 2*l-1]
|
| 235 |
+
"""
|
| 236 |
+
batch, heads, length, _ = x.size()
|
| 237 |
+
# padd along column
|
| 238 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
| 239 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
| 240 |
+
# add 0's in the beginning that will skew the elements after reshape
|
| 241 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
| 242 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
| 243 |
+
return x_final
|
| 244 |
+
|
| 245 |
+
def _attention_bias_proximal(self, length):
|
| 246 |
+
"""Bias for self-attention to encourage attention to close positions.
|
| 247 |
+
Args:
|
| 248 |
+
length: an integer scalar.
|
| 249 |
+
Returns:
|
| 250 |
+
a Tensor with shape [1, 1, length, length]
|
| 251 |
+
"""
|
| 252 |
+
r = torch.arange(length, dtype=torch.float32)
|
| 253 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
| 254 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
class FFN(nn.Module):
|
| 258 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
| 259 |
+
super().__init__()
|
| 260 |
+
self.in_channels = in_channels
|
| 261 |
+
self.out_channels = out_channels
|
| 262 |
+
self.filter_channels = filter_channels
|
| 263 |
+
self.kernel_size = kernel_size
|
| 264 |
+
self.p_dropout = p_dropout
|
| 265 |
+
self.activation = activation
|
| 266 |
+
self.causal = causal
|
| 267 |
+
|
| 268 |
+
if causal:
|
| 269 |
+
self.padding = self._causal_padding
|
| 270 |
+
else:
|
| 271 |
+
self.padding = self._same_padding
|
| 272 |
+
|
| 273 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
| 274 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
| 275 |
+
self.drop = nn.Dropout(p_dropout)
|
| 276 |
+
|
| 277 |
+
def forward(self, x, x_mask):
|
| 278 |
+
x = self.conv_1(self.padding(x * x_mask))
|
| 279 |
+
if self.activation == "gelu":
|
| 280 |
+
x = x * torch.sigmoid(1.702 * x)
|
| 281 |
+
else:
|
| 282 |
+
x = torch.relu(x)
|
| 283 |
+
x = self.drop(x)
|
| 284 |
+
x = self.conv_2(self.padding(x * x_mask))
|
| 285 |
+
return x * x_mask
|
| 286 |
+
|
| 287 |
+
def _causal_padding(self, x):
|
| 288 |
+
if self.kernel_size == 1:
|
| 289 |
+
return x
|
| 290 |
+
pad_l = self.kernel_size - 1
|
| 291 |
+
pad_r = 0
|
| 292 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 293 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 294 |
+
return x
|
| 295 |
+
|
| 296 |
+
def _same_padding(self, x):
|
| 297 |
+
if self.kernel_size == 1:
|
| 298 |
+
return x
|
| 299 |
+
pad_l = (self.kernel_size - 1) // 2
|
| 300 |
+
pad_r = self.kernel_size // 2
|
| 301 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 302 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 303 |
+
return x
|
commons.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 9 |
+
classname = m.__class__.__name__
|
| 10 |
+
if classname.find("Conv") != -1:
|
| 11 |
+
m.weight.data.normal_(mean, std)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_padding(kernel_size, dilation=1):
|
| 15 |
+
return int((kernel_size*dilation - dilation)/2)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def convert_pad_shape(pad_shape):
|
| 19 |
+
l = pad_shape[::-1]
|
| 20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
| 21 |
+
return pad_shape
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def intersperse(lst, item):
|
| 25 |
+
result = [item] * (len(lst) * 2 + 1)
|
| 26 |
+
result[1::2] = lst
|
| 27 |
+
return result
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
| 31 |
+
"""KL(P||Q)"""
|
| 32 |
+
kl = (logs_q - logs_p) - 0.5
|
| 33 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
| 34 |
+
return kl
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def rand_gumbel(shape):
|
| 38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
| 39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
| 40 |
+
return -torch.log(-torch.log(uniform_samples))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def rand_gumbel_like(x):
|
| 44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
| 45 |
+
return g
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
| 49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
| 50 |
+
for i in range(x.size(0)):
|
| 51 |
+
idx_str = ids_str[i]
|
| 52 |
+
idx_end = idx_str + segment_size
|
| 53 |
+
try:
|
| 54 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
| 55 |
+
except RuntimeError:
|
| 56 |
+
print("?")
|
| 57 |
+
return ret
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
| 61 |
+
b, d, t = x.size()
|
| 62 |
+
if x_lengths is None:
|
| 63 |
+
x_lengths = t
|
| 64 |
+
ids_str_max = x_lengths - segment_size + 1
|
| 65 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
| 66 |
+
ret = slice_segments(x, ids_str, segment_size)
|
| 67 |
+
return ret, ids_str
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def get_timing_signal_1d(
|
| 71 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
| 72 |
+
position = torch.arange(length, dtype=torch.float)
|
| 73 |
+
num_timescales = channels // 2
|
| 74 |
+
log_timescale_increment = (
|
| 75 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
| 76 |
+
(num_timescales - 1))
|
| 77 |
+
inv_timescales = min_timescale * torch.exp(
|
| 78 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
| 79 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
| 80 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
| 81 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
| 82 |
+
signal = signal.view(1, channels, length)
|
| 83 |
+
return signal
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
| 87 |
+
b, channels, length = x.size()
|
| 88 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
| 89 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
| 93 |
+
b, channels, length = x.size()
|
| 94 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
| 95 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def subsequent_mask(length):
|
| 99 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
| 100 |
+
return mask
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
@torch.jit.script
|
| 104 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
| 105 |
+
n_channels_int = n_channels[0]
|
| 106 |
+
in_act = input_a + input_b
|
| 107 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
| 108 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
| 109 |
+
acts = t_act * s_act
|
| 110 |
+
return acts
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def convert_pad_shape(pad_shape):
|
| 114 |
+
l = pad_shape[::-1]
|
| 115 |
+
pad_shape = [item for sublist in l for item in sublist]
|
| 116 |
+
return pad_shape
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def shift_1d(x):
|
| 120 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
| 121 |
+
return x
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def sequence_mask(length, max_length=None):
|
| 125 |
+
if max_length is None:
|
| 126 |
+
max_length = length.max()
|
| 127 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
| 128 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def generate_path(duration, mask):
|
| 132 |
+
"""
|
| 133 |
+
duration: [b, 1, t_x]
|
| 134 |
+
mask: [b, 1, t_y, t_x]
|
| 135 |
+
"""
|
| 136 |
+
device = duration.device
|
| 137 |
+
|
| 138 |
+
b, _, t_y, t_x = mask.shape
|
| 139 |
+
cum_duration = torch.cumsum(duration, -1)
|
| 140 |
+
|
| 141 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
| 142 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
| 143 |
+
path = path.view(b, t_x, t_y)
|
| 144 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
| 145 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
| 146 |
+
return path
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
| 150 |
+
if isinstance(parameters, torch.Tensor):
|
| 151 |
+
parameters = [parameters]
|
| 152 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
| 153 |
+
norm_type = float(norm_type)
|
| 154 |
+
if clip_value is not None:
|
| 155 |
+
clip_value = float(clip_value)
|
| 156 |
+
|
| 157 |
+
total_norm = 0
|
| 158 |
+
for p in parameters:
|
| 159 |
+
param_norm = p.grad.data.norm(norm_type)
|
| 160 |
+
total_norm += param_norm.item() ** norm_type
|
| 161 |
+
if clip_value is not None:
|
| 162 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
| 163 |
+
total_norm = total_norm ** (1. / norm_type)
|
| 164 |
+
return total_norm
|
mel_processing.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import torch.utils.data
|
| 8 |
+
import numpy as np
|
| 9 |
+
import librosa
|
| 10 |
+
import librosa.util as librosa_util
|
| 11 |
+
from librosa.util import normalize, pad_center, tiny
|
| 12 |
+
from scipy.signal import get_window
|
| 13 |
+
from scipy.io.wavfile import read
|
| 14 |
+
from librosa.filters import mel as librosa_mel_fn
|
| 15 |
+
|
| 16 |
+
MAX_WAV_VALUE = 32768.0
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
| 20 |
+
"""
|
| 21 |
+
PARAMS
|
| 22 |
+
------
|
| 23 |
+
C: compression factor
|
| 24 |
+
"""
|
| 25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
| 29 |
+
"""
|
| 30 |
+
PARAMS
|
| 31 |
+
------
|
| 32 |
+
C: compression factor used to compress
|
| 33 |
+
"""
|
| 34 |
+
return torch.exp(x) / C
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def spectral_normalize_torch(magnitudes):
|
| 38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
| 39 |
+
return output
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def spectral_de_normalize_torch(magnitudes):
|
| 43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
| 44 |
+
return output
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
mel_basis = {}
|
| 48 |
+
hann_window = {}
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
| 52 |
+
if torch.min(y) < -1.:
|
| 53 |
+
print('min value is ', torch.min(y))
|
| 54 |
+
if torch.max(y) > 1.:
|
| 55 |
+
print('max value is ', torch.max(y))
|
| 56 |
+
|
| 57 |
+
global hann_window
|
| 58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
| 59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
| 60 |
+
if wnsize_dtype_device not in hann_window:
|
| 61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
| 62 |
+
|
| 63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
| 64 |
+
y = y.squeeze(1)
|
| 65 |
+
|
| 66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
| 67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
| 68 |
+
|
| 69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 70 |
+
return spec
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
| 74 |
+
global mel_basis
|
| 75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
| 76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
| 77 |
+
if fmax_dtype_device not in mel_basis:
|
| 78 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
| 79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
| 80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
| 81 |
+
spec = spectral_normalize_torch(spec)
|
| 82 |
+
return spec
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
| 86 |
+
if torch.min(y) < -1.:
|
| 87 |
+
print('min value is ', torch.min(y))
|
| 88 |
+
if torch.max(y) > 1.:
|
| 89 |
+
print('max value is ', torch.max(y))
|
| 90 |
+
|
| 91 |
+
global mel_basis, hann_window
|
| 92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
| 93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
| 94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
| 95 |
+
if fmax_dtype_device not in mel_basis:
|
| 96 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
| 97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
| 98 |
+
if wnsize_dtype_device not in hann_window:
|
| 99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
| 100 |
+
|
| 101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
| 102 |
+
y = y.squeeze(1)
|
| 103 |
+
|
| 104 |
+
spec = torch.stft(y.float(), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
| 105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
| 106 |
+
|
| 107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 108 |
+
|
| 109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
| 110 |
+
spec = spectral_normalize_torch(spec)
|
| 111 |
+
|
| 112 |
+
return spec
|
model/D_latest.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c66b774e4cfc60100d046ae590682716d69c808d53d3a3df58e1dcd5e885e11
|
| 3 |
+
size 187027092
|
model/G_latest.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8f589c7a64002f9c9f0cbbf7991e6fbd2f08d7065160dd11d892167667462154
|
| 3 |
+
size 159542505
|
model/config.json
ADDED
|
@@ -0,0 +1,775 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 10,
|
| 4 |
+
"eval_interval": 100,
|
| 5 |
+
"seed": 1234,
|
| 6 |
+
"epochs": 10000,
|
| 7 |
+
"learning_rate": 0.0002,
|
| 8 |
+
"betas": [
|
| 9 |
+
0.8,
|
| 10 |
+
0.99
|
| 11 |
+
],
|
| 12 |
+
"eps": 1e-09,
|
| 13 |
+
"batch_size": 16,
|
| 14 |
+
"fp16_run": true,
|
| 15 |
+
"lr_decay": 0.999875,
|
| 16 |
+
"segment_size": 8192,
|
| 17 |
+
"init_lr_ratio": 1,
|
| 18 |
+
"warmup_epochs": 0,
|
| 19 |
+
"c_mel": 45,
|
| 20 |
+
"c_kl": 1.0
|
| 21 |
+
},
|
| 22 |
+
"data": {
|
| 23 |
+
"training_files": "final_annotation_train.txt",
|
| 24 |
+
"validation_files": "final_annotation_val.txt",
|
| 25 |
+
"text_cleaners": [
|
| 26 |
+
"zh_ja_mixture_cleaners"
|
| 27 |
+
],
|
| 28 |
+
"max_wav_value": 32768.0,
|
| 29 |
+
"sampling_rate": 22050,
|
| 30 |
+
"filter_length": 1024,
|
| 31 |
+
"hop_length": 256,
|
| 32 |
+
"win_length": 1024,
|
| 33 |
+
"n_mel_channels": 80,
|
| 34 |
+
"mel_fmin": 0.0,
|
| 35 |
+
"mel_fmax": null,
|
| 36 |
+
"add_blank": true,
|
| 37 |
+
"n_speakers": 631,
|
| 38 |
+
"cleaned_text": true
|
| 39 |
+
},
|
| 40 |
+
"model": {
|
| 41 |
+
"inter_channels": 192,
|
| 42 |
+
"hidden_channels": 192,
|
| 43 |
+
"filter_channels": 768,
|
| 44 |
+
"n_heads": 2,
|
| 45 |
+
"n_layers": 6,
|
| 46 |
+
"kernel_size": 3,
|
| 47 |
+
"p_dropout": 0.1,
|
| 48 |
+
"resblock": "1",
|
| 49 |
+
"resblock_kernel_sizes": [
|
| 50 |
+
3,
|
| 51 |
+
7,
|
| 52 |
+
11
|
| 53 |
+
],
|
| 54 |
+
"resblock_dilation_sizes": [
|
| 55 |
+
[
|
| 56 |
+
1,
|
| 57 |
+
3,
|
| 58 |
+
5
|
| 59 |
+
],
|
| 60 |
+
[
|
| 61 |
+
1,
|
| 62 |
+
3,
|
| 63 |
+
5
|
| 64 |
+
],
|
| 65 |
+
[
|
| 66 |
+
1,
|
| 67 |
+
3,
|
| 68 |
+
5
|
| 69 |
+
]
|
| 70 |
+
],
|
| 71 |
+
"upsample_rates": [
|
| 72 |
+
8,
|
| 73 |
+
8,
|
| 74 |
+
2,
|
| 75 |
+
2
|
| 76 |
+
],
|
| 77 |
+
"upsample_initial_channel": 512,
|
| 78 |
+
"upsample_kernel_sizes": [
|
| 79 |
+
16,
|
| 80 |
+
16,
|
| 81 |
+
4,
|
| 82 |
+
4
|
| 83 |
+
],
|
| 84 |
+
"n_layers_q": 3,
|
| 85 |
+
"use_spectral_norm": false,
|
| 86 |
+
"gin_channels": 256
|
| 87 |
+
},
|
| 88 |
+
"speakers": {
|
| 89 |
+
"\u54c8\u5c14\u6ee8\u6ee8\u6c5f(\u4e2d\u914d)": 0,
|
| 90 |
+
"\u592a\u539f(\u4e2d\u914d)": 1,
|
| 91 |
+
"\u5b81\u6d77(\u4e2d\u914d)": 2,
|
| 92 |
+
"\u5e73\u6d77(\u4e2d\u914d)": 3,
|
| 93 |
+
"\u5e94\u745e(\u4e2d\u914d)": 4,
|
| 94 |
+
"\u629a\u987a(\u4e2d\u914d)": 5,
|
| 95 |
+
"\u6d77\u573b(\u4e2d\u914d)": 6,
|
| 96 |
+
"\u6d77\u5929(\u4e2d\u914d)": 7,
|
| 97 |
+
"\u8087\u548c(\u4e2d\u914d)": 8,
|
| 98 |
+
"\u9038\u4ed9(\u4e2d\u914d)": 9,
|
| 99 |
+
"\u9547\u6d77(\u4e2d\u914d)": 10,
|
| 100 |
+
"\u957f\u6625(\u4e2d\u914d)": 11,
|
| 101 |
+
"\u978d\u5c71(\u4e2d\u914d)": 12,
|
| 102 |
+
"22": 13,
|
| 103 |
+
"33": 14,
|
| 104 |
+
"Abercrombie": 15,
|
| 105 |
+
"Abukuma": 16,
|
| 106 |
+
"Acasta": 17,
|
| 107 |
+
"Achilles": 18,
|
| 108 |
+
"Admiral Graf Spee": 19,
|
| 109 |
+
"Admiral Hipper": 20,
|
| 110 |
+
"Agano": 21,
|
| 111 |
+
"Ajax": 22,
|
| 112 |
+
"Akagi": 23,
|
| 113 |
+
"Akagi-chan": 24,
|
| 114 |
+
"Akashi": 25,
|
| 115 |
+
"Akatsuki": 26,
|
| 116 |
+
"Akizuki Ritsuko": 27,
|
| 117 |
+
"Alabama": 28,
|
| 118 |
+
"Albacore": 29,
|
| 119 |
+
"Albion": 30,
|
| 120 |
+
"Alfredo Oriani": 31,
|
| 121 |
+
"Alg\u00e9rie": 32,
|
| 122 |
+
"Allen M. Sumner": 33,
|
| 123 |
+
"Amagi": 34,
|
| 124 |
+
"Amagi-chan": 35,
|
| 125 |
+
"Amami Haruka": 36,
|
| 126 |
+
"Amazon": 37,
|
| 127 |
+
"An shan": 38,
|
| 128 |
+
"Anchorage": 39,
|
| 129 |
+
"Andrea Doria": 40,
|
| 130 |
+
"Aoba": 41,
|
| 131 |
+
"Aquila": 42,
|
| 132 |
+
"Arashio": 43,
|
| 133 |
+
"Archerfish": 44,
|
| 134 |
+
"Ardent": 45,
|
| 135 |
+
"Arethusa": 46,
|
| 136 |
+
"Argus": 47,
|
| 137 |
+
"Ariake": 48,
|
| 138 |
+
"Arizona": 49,
|
| 139 |
+
"Arizona META": 50,
|
| 140 |
+
"Ark Royal": 51,
|
| 141 |
+
"Ark Royal META": 52,
|
| 142 |
+
"Arkhangelsk": 53,
|
| 143 |
+
"Asashio": 54,
|
| 144 |
+
"Ashigara": 55,
|
| 145 |
+
"Astoria": 56,
|
| 146 |
+
"Asukagawa Chise": 57,
|
| 147 |
+
"Atago": 58,
|
| 148 |
+
"Atlanta": 59,
|
| 149 |
+
"Attilio Regolo": 60,
|
| 150 |
+
"August von Parseval": 61,
|
| 151 |
+
"Aulick": 62,
|
| 152 |
+
"Aurora": 63,
|
| 153 |
+
"Avrora": 64,
|
| 154 |
+
"Ayanami": 65,
|
| 155 |
+
"Aylwin": 66,
|
| 156 |
+
"Azuma": 67,
|
| 157 |
+
"Bache": 68,
|
| 158 |
+
"Bailey": 69,
|
| 159 |
+
"Baltimore": 70,
|
| 160 |
+
"Bataan": 71,
|
| 161 |
+
"Beagle": 72,
|
| 162 |
+
"Belfast": 73,
|
| 163 |
+
"Bellona": 74,
|
| 164 |
+
"Benson": 75,
|
| 165 |
+
"Biloxi": 76,
|
| 166 |
+
"Birmingham": 77,
|
| 167 |
+
"Bismarck": 78,
|
| 168 |
+
"Bismarck Zwei": 79,
|
| 169 |
+
"Black Heart": 80,
|
| 170 |
+
"Black Prince": 81,
|
| 171 |
+
"Blanc": 82,
|
| 172 |
+
"Bluegill": 83,
|
| 173 |
+
"Bl\u00fccher": 84,
|
| 174 |
+
"Bogue": 85,
|
| 175 |
+
"Boise": 86,
|
| 176 |
+
"Bolzano": 87,
|
| 177 |
+
"Bremerton": 88,
|
| 178 |
+
"Brest": 89,
|
| 179 |
+
"Bristol": 90,
|
| 180 |
+
"Brooklyn": 91,
|
| 181 |
+
"Br\u00fcnhilde": 92,
|
| 182 |
+
"Bulldog": 93,
|
| 183 |
+
"Bunker Hill": 94,
|
| 184 |
+
"Bush": 95,
|
| 185 |
+
"B\u00e9arn": 96,
|
| 186 |
+
"California": 97,
|
| 187 |
+
"Carabiniere": 98,
|
| 188 |
+
"Casablanca": 99,
|
| 189 |
+
"Cassin": 100,
|
| 190 |
+
"Cavalla": 101,
|
| 191 |
+
"Centaur": 102,
|
| 192 |
+
"Champagne": 103,
|
| 193 |
+
"Chang Chun": 104,
|
| 194 |
+
"Chao Ho": 105,
|
| 195 |
+
"Chapayev": 106,
|
| 196 |
+
"Charles Ausburne": 107,
|
| 197 |
+
"Charybdis": 108,
|
| 198 |
+
"Chaser": 109,
|
| 199 |
+
"Chen Hai": 110,
|
| 200 |
+
"Cheshire": 111,
|
| 201 |
+
"Chicago": 112,
|
| 202 |
+
"Chikuma": 113,
|
| 203 |
+
"Chitose": 114,
|
| 204 |
+
"Chiyoda": 115,
|
| 205 |
+
"Chkalov": 116,
|
| 206 |
+
"Choukai": 117,
|
| 207 |
+
"Cleveland": 118,
|
| 208 |
+
"Colorado": 119,
|
| 209 |
+
"Columbia": 120,
|
| 210 |
+
"Comet": 121,
|
| 211 |
+
"Concord": 122,
|
| 212 |
+
"Conte di Cavour": 123,
|
| 213 |
+
"Cooper": 124,
|
| 214 |
+
"Craven": 125,
|
| 215 |
+
"Crescent": 126,
|
| 216 |
+
"Curacoa": 127,
|
| 217 |
+
"Curlew": 128,
|
| 218 |
+
"Cygnet": 129,
|
| 219 |
+
"Dace": 130,
|
| 220 |
+
"Denver": 131,
|
| 221 |
+
"Deutschland": 132,
|
| 222 |
+
"Dewey": 133,
|
| 223 |
+
"Dido": 134,
|
| 224 |
+
"Dorsetshire": 135,
|
| 225 |
+
"Downes": 136,
|
| 226 |
+
"Drake": 137,
|
| 227 |
+
"Duca degli Abruzzi": 138,
|
| 228 |
+
"Duke of York": 139,
|
| 229 |
+
"Dunkerque": 140,
|
| 230 |
+
"Eagle": 141,
|
| 231 |
+
"Echo": 142,
|
| 232 |
+
"Edinburgh": 143,
|
| 233 |
+
"Elbe": 144,
|
| 234 |
+
"Elbing": 145,
|
| 235 |
+
"Eldridge": 146,
|
| 236 |
+
"Emanuele Pessagno": 147,
|
| 237 |
+
"Emden": 148,
|
| 238 |
+
"Enterprise": 149,
|
| 239 |
+
"Erebus": 150,
|
| 240 |
+
"Eskimo": 151,
|
| 241 |
+
"Essex": 152,
|
| 242 |
+
"Exeter": 153,
|
| 243 |
+
"Fiji": 154,
|
| 244 |
+
"Fletcher": 155,
|
| 245 |
+
"Foch": 156,
|
| 246 |
+
"Foote": 157,
|
| 247 |
+
"Forbin": 158,
|
| 248 |
+
"Formidable": 159,
|
| 249 |
+
"Fortune": 160,
|
| 250 |
+
"Fortune META": 161,
|
| 251 |
+
"Foxhound": 162,
|
| 252 |
+
"Friedrich der Gro\u00dfe": 163,
|
| 253 |
+
"Fu shun": 164,
|
| 254 |
+
"Fubuki": 165,
|
| 255 |
+
"Fumiruiru": 166,
|
| 256 |
+
"Fumizuki": 167,
|
| 257 |
+
"Furutaka": 168,
|
| 258 |
+
"Fusou": 169,
|
| 259 |
+
"Fusou META": 170,
|
| 260 |
+
"Futami Ami": 171,
|
| 261 |
+
"Futami Mami": 172,
|
| 262 |
+
"Galatea": 173,
|
| 263 |
+
"Gangut": 174,
|
| 264 |
+
"Gascogne": 175,
|
| 265 |
+
"Georg Thiele": 176,
|
| 266 |
+
"Georgia": 177,
|
| 267 |
+
"Giulio Cesare": 178,
|
| 268 |
+
"Giuseppe Garibaldi": 179,
|
| 269 |
+
"Glasgow": 180,
|
| 270 |
+
"Glorious": 181,
|
| 271 |
+
"Gloucester": 182,
|
| 272 |
+
"Glowworm": 183,
|
| 273 |
+
"Gneisenau": 184,
|
| 274 |
+
"Gneisenau META": 185,
|
| 275 |
+
"Gorizia": 186,
|
| 276 |
+
"Graf Zeppelin": 187,
|
| 277 |
+
"Green Heart": 188,
|
| 278 |
+
"Gremyashchy": 189,
|
| 279 |
+
"Grenville": 190,
|
| 280 |
+
"Gridley": 191,
|
| 281 |
+
"Gromky": 192,
|
| 282 |
+
"Grozny": 193,
|
| 283 |
+
"Haguro": 194,
|
| 284 |
+
"Hai Chi": 195,
|
| 285 |
+
"Hai Tien": 196,
|
| 286 |
+
"Hakuryuu": 197,
|
| 287 |
+
"Halsey Powell": 198,
|
| 288 |
+
"Hamakaze": 199,
|
| 289 |
+
"Hammann": 200,
|
| 290 |
+
"Hammann II": 201,
|
| 291 |
+
"Hanazuki": 202,
|
| 292 |
+
"Hans L\u00fcdemann": 203,
|
| 293 |
+
"Harbin": 204,
|
| 294 |
+
"Hardy": 205,
|
| 295 |
+
"Haruna": 206,
|
| 296 |
+
"Harutsuki": 207,
|
| 297 |
+
"Hass": 208,
|
| 298 |
+
"Hatakaze": 209,
|
| 299 |
+
"Hatsuharu": 210,
|
| 300 |
+
"Hatsushimo": 211,
|
| 301 |
+
"Hazelwood": 212,
|
| 302 |
+
"Helena": 213,
|
| 303 |
+
"Helena META": 214,
|
| 304 |
+
"Hermann K\u00fcnne": 215,
|
| 305 |
+
"Hermes": 216,
|
| 306 |
+
"Hermione": 217,
|
| 307 |
+
"Hero": 218,
|
| 308 |
+
"Hibiki": 219,
|
| 309 |
+
"Hiei": 220,
|
| 310 |
+
"Hiei-chan": 221,
|
| 311 |
+
"Hiryuu": 222,
|
| 312 |
+
"Hiryuu META": 223,
|
| 313 |
+
"Hiyou": 224,
|
| 314 |
+
"Hiyou META": 225,
|
| 315 |
+
"Hobby": 226,
|
| 316 |
+
"Honoka": 227,
|
| 317 |
+
"Honolulu": 228,
|
| 318 |
+
"Hood": 229,
|
| 319 |
+
"Hornet": 230,
|
| 320 |
+
"Hornet II": 231,
|
| 321 |
+
"Houshou": 232,
|
| 322 |
+
"Houston": 233,
|
| 323 |
+
"Howe": 234,
|
| 324 |
+
"Hunter": 235,
|
| 325 |
+
"Hunter META": 236,
|
| 326 |
+
"Hwah Jah": 237,
|
| 327 |
+
"Hyuuga": 238,
|
| 328 |
+
"I13": 239,
|
| 329 |
+
"I168": 240,
|
| 330 |
+
"I19": 241,
|
| 331 |
+
"I25": 242,
|
| 332 |
+
"I26": 243,
|
| 333 |
+
"I56": 244,
|
| 334 |
+
"I58": 245,
|
| 335 |
+
"Ibuki": 246,
|
| 336 |
+
"Icarus": 247,
|
| 337 |
+
"Ikazuchi": 248,
|
| 338 |
+
"Illustrious": 249,
|
| 339 |
+
"Impero": 250,
|
| 340 |
+
"Implacable": 251,
|
| 341 |
+
"Inazuma": 252,
|
| 342 |
+
"Independence": 253,
|
| 343 |
+
"Indianapolis": 254,
|
| 344 |
+
"Indomitable": 255,
|
| 345 |
+
"Ingraham": 256,
|
| 346 |
+
"Intrepid": 257,
|
| 347 |
+
"Ise": 258,
|
| 348 |
+
"Isokaze": 259,
|
| 349 |
+
"Isuzu": 260,
|
| 350 |
+
"Izumo": 261,
|
| 351 |
+
"Jade": 262,
|
| 352 |
+
"Jamaica": 263,
|
| 353 |
+
"Janus": 264,
|
| 354 |
+
"Javelin": 265,
|
| 355 |
+
"Jean Bart": 266,
|
| 356 |
+
"Jeanne d'Arc": 267,
|
| 357 |
+
"Jenkins": 268,
|
| 358 |
+
"Jersey": 269,
|
| 359 |
+
"Jervis": 270,
|
| 360 |
+
"Jintsuu": 271,
|
| 361 |
+
"Joffre": 272,
|
| 362 |
+
"Jun'you": 273,
|
| 363 |
+
"Juneau": 274,
|
| 364 |
+
"Juno": 275,
|
| 365 |
+
"Junyou META": 276,
|
| 366 |
+
"Jupiter": 277,
|
| 367 |
+
"Kaga": 278,
|
| 368 |
+
"Kagerou": 279,
|
| 369 |
+
"Kako": 280,
|
| 370 |
+
"Kala Ideas": 281,
|
| 371 |
+
"Kalk": 282,
|
| 372 |
+
"Kamikaze": 283,
|
| 373 |
+
"Karl Galster": 284,
|
| 374 |
+
"Karlsruhe": 285,
|
| 375 |
+
"Kashino": 286,
|
| 376 |
+
"Kasumi": 287,
|
| 377 |
+
"Katsuragi": 288,
|
| 378 |
+
"Kawakaze": 289,
|
| 379 |
+
"Kazagumo": 290,
|
| 380 |
+
"Kent": 291,
|
| 381 |
+
"Kiev": 292,
|
| 382 |
+
"Kii": 293,
|
| 383 |
+
"Kimberly": 294,
|
| 384 |
+
"King George V": 295,
|
| 385 |
+
"Kinu": 296,
|
| 386 |
+
"Kinugasa": 297,
|
| 387 |
+
"Kirishima": 298,
|
| 388 |
+
"Kirov": 299,
|
| 389 |
+
"Kisaragi": 300,
|
| 390 |
+
"Kisaragi Chihaya": 301,
|
| 391 |
+
"Kitakaze": 302,
|
| 392 |
+
"Kiyonami": 303,
|
| 393 |
+
"KizunaAI": 304,
|
| 394 |
+
"KizunaAI\u00b7Anniversary": 305,
|
| 395 |
+
"KizunaAI\u00b7Elegant": 306,
|
| 396 |
+
"KizunaAI\u00b7SuperGamer": 307,
|
| 397 |
+
"Klaudia Valentz": 308,
|
| 398 |
+
"Kongou": 309,
|
| 399 |
+
"Kronshtadt": 310,
|
| 400 |
+
"Kumano": 311,
|
| 401 |
+
"Kuon": 312,
|
| 402 |
+
"Kuroshio": 313,
|
| 403 |
+
"Kursk": 314,
|
| 404 |
+
"Kuybyshev": 315,
|
| 405 |
+
"K\u00f6ln": 316,
|
| 406 |
+
"K\u00f6nigsberg": 317,
|
| 407 |
+
"L'Indomptable": 318,
|
| 408 |
+
"L'Opini\u00e2tre": 319,
|
| 409 |
+
"La Galissonni\u00e8re": 320,
|
| 410 |
+
"La Galissonni\u00e8re META": 321,
|
| 411 |
+
"Laffey": 322,
|
| 412 |
+
"Langley": 323,
|
| 413 |
+
"Langley II": 324,
|
| 414 |
+
"Le Malin": 325,
|
| 415 |
+
"Le Mars": 326,
|
| 416 |
+
"Le Terrible": 327,
|
| 417 |
+
"Le Triomphant": 328,
|
| 418 |
+
"Le T\u00e9m\u00e9raire": 329,
|
| 419 |
+
"Leander": 330,
|
| 420 |
+
"Leberecht Maass": 331,
|
| 421 |
+
"Leipzig": 332,
|
| 422 |
+
"Leonardo da Vinci": 333,
|
| 423 |
+
"Lexington": 334,
|
| 424 |
+
"Libeccio": 335,
|
| 425 |
+
"Lila Decyrus": 336,
|
| 426 |
+
"Little Bel": 337,
|
| 427 |
+
"Little Cheshire": 338,
|
| 428 |
+
"Little Enterprise": 339,
|
| 429 |
+
"Little Formidable": 340,
|
| 430 |
+
"Little Helena": 341,
|
| 431 |
+
"Little Illustrious": 342,
|
| 432 |
+
"Little Prinz Eugen": 343,
|
| 433 |
+
"Little Renown": 344,
|
| 434 |
+
"Little San Diego": 345,
|
| 435 |
+
"Little Spee": 346,
|
| 436 |
+
"Littorio": 347,
|
| 437 |
+
"London": 348,
|
| 438 |
+
"Long Island": 349,
|
| 439 |
+
"Luna": 350,
|
| 440 |
+
"L\u00fctzow": 351,
|
| 441 |
+
"Maestrale": 352,
|
| 442 |
+
"Magdeburg": 353,
|
| 443 |
+
"Maill\u00e9 Br\u00e9z\u00e9": 354,
|
| 444 |
+
"Mainz": 355,
|
| 445 |
+
"Makinami": 356,
|
| 446 |
+
"Manchester": 357,
|
| 447 |
+
"Marblehead": 358,
|
| 448 |
+
"Marco Polo": 359,
|
| 449 |
+
"Marie Rose": 360,
|
| 450 |
+
"Maryland": 361,
|
| 451 |
+
"Massachusetts": 362,
|
| 452 |
+
"Matchless": 363,
|
| 453 |
+
"Matsukaze": 364,
|
| 454 |
+
"Maury": 365,
|
| 455 |
+
"Maya": 366,
|
| 456 |
+
"McCall": 367,
|
| 457 |
+
"Memphis": 368,
|
| 458 |
+
"Memphis META": 369,
|
| 459 |
+
"Michishio": 370,
|
| 460 |
+
"Mikasa": 371,
|
| 461 |
+
"Mikazuki": 372,
|
| 462 |
+
"Mikuma": 373,
|
| 463 |
+
"Minami Yume": 374,
|
| 464 |
+
"Minase Iori": 375,
|
| 465 |
+
"Minato Aqua": 376,
|
| 466 |
+
"Minazuki": 377,
|
| 467 |
+
"Minneapolis": 378,
|
| 468 |
+
"Minsk": 379,
|
| 469 |
+
"Misaki": 380,
|
| 470 |
+
"Miura Azusa": 381,
|
| 471 |
+
"Miyuki": 382,
|
| 472 |
+
"Mogami": 383,
|
| 473 |
+
"Monarch": 384,
|
| 474 |
+
"Monica": 385,
|
| 475 |
+
"Montpelier": 386,
|
| 476 |
+
"Morrison": 387,
|
| 477 |
+
"Mujina": 388,
|
| 478 |
+
"Mullany": 389,
|
| 479 |
+
"Murasaki Shion": 390,
|
| 480 |
+
"Murmansk": 391,
|
| 481 |
+
"Musashi": 392,
|
| 482 |
+
"Musketeer": 393,
|
| 483 |
+
"Mutsu": 394,
|
| 484 |
+
"Mutsuki": 395,
|
| 485 |
+
"Myoukou": 396,
|
| 486 |
+
"Nachi": 397,
|
| 487 |
+
"Naganami": 398,
|
| 488 |
+
"Nagara": 399,
|
| 489 |
+
"Nagato": 400,
|
| 490 |
+
"Nagatsuki": 401,
|
| 491 |
+
"Nagisa": 402,
|
| 492 |
+
"Naka": 403,
|
| 493 |
+
"Nakiri Ayame": 404,
|
| 494 |
+
"Namiko": 405,
|
| 495 |
+
"Natsuiro Matsuri": 406,
|
| 496 |
+
"Nautilus": 407,
|
| 497 |
+
"Nekone": 408,
|
| 498 |
+
"Nelson": 409,
|
| 499 |
+
"Neptune": 410,
|
| 500 |
+
"Nevada": 411,
|
| 501 |
+
"New Jersey": 412,
|
| 502 |
+
"New Orleans": 413,
|
| 503 |
+
"Newcastle": 414,
|
| 504 |
+
"Nicholas": 415,
|
| 505 |
+
"Nicoloso da Recco": 416,
|
| 506 |
+
"Niizuki": 417,
|
| 507 |
+
"Ning Hai": 418,
|
| 508 |
+
"Noire": 419,
|
| 509 |
+
"Norfolk": 420,
|
| 510 |
+
"North Carolina": 421,
|
| 511 |
+
"Northampton": 422,
|
| 512 |
+
"Northampton II": 423,
|
| 513 |
+
"Noshiro": 424,
|
| 514 |
+
"Nowaki": 425,
|
| 515 |
+
"Nyotengu": 426,
|
| 516 |
+
"N\u00fcrnberg": 427,
|
| 517 |
+
"Odin": 428,
|
| 518 |
+
"Oite": 429,
|
| 519 |
+
"Oklahoma": 430,
|
| 520 |
+
"Omaha": 431,
|
| 521 |
+
"Ookami Mio": 432,
|
| 522 |
+
"Ooshio": 433,
|
| 523 |
+
"Otto von Alvensleben": 434,
|
| 524 |
+
"Oyashio": 435,
|
| 525 |
+
"Pamiat Merkuria": 436,
|
| 526 |
+
"Patricia Abelheim": 437,
|
| 527 |
+
"Penelope": 438,
|
| 528 |
+
"Pennsylvania": 439,
|
| 529 |
+
"Pensacola": 440,
|
| 530 |
+
"Perseus": 441,
|
| 531 |
+
"Peter Strasser": 442,
|
| 532 |
+
"Phoenix": 443,
|
| 533 |
+
"Ping Hai": 444,
|
| 534 |
+
"Plymouth": 445,
|
| 535 |
+
"Pola": 446,
|
| 536 |
+
"Pompeo Magno": 447,
|
| 537 |
+
"Portland": 448,
|
| 538 |
+
"Prince of Wales": 449,
|
| 539 |
+
"Princeton": 450,
|
| 540 |
+
"Prinz Adalbert": 451,
|
| 541 |
+
"Prinz Eugen": 452,
|
| 542 |
+
"Prinz Heinrich": 453,
|
| 543 |
+
"Prinz Rupprecht": 454,
|
| 544 |
+
"Purple Heart": 455,
|
| 545 |
+
"Queen Elizabeth": 456,
|
| 546 |
+
"Queen Elizabeth META": 457,
|
| 547 |
+
"Quincy": 458,
|
| 548 |
+
"Radford": 459,
|
| 549 |
+
"Raleigh": 460,
|
| 550 |
+
"Ranger": 461,
|
| 551 |
+
"Regensburg": 462,
|
| 552 |
+
"Reisalin Stout": 463,
|
| 553 |
+
"Reno": 464,
|
| 554 |
+
"Renown": 465,
|
| 555 |
+
"Renown META": 466,
|
| 556 |
+
"Repulse": 467,
|
| 557 |
+
"Repulse META": 468,
|
| 558 |
+
"Revenge": 469,
|
| 559 |
+
"Richelieu": 470,
|
| 560 |
+
"Richmond": 471,
|
| 561 |
+
"Rodney": 472,
|
| 562 |
+
"Roma": 473,
|
| 563 |
+
"Roon": 474,
|
| 564 |
+
"Royal Fortune": 475,
|
| 565 |
+
"Royal Oak": 476,
|
| 566 |
+
"Rurutie": 477,
|
| 567 |
+
"Ryuuhou": 478,
|
| 568 |
+
"Ryuujou": 479,
|
| 569 |
+
"Saint Louis": 480,
|
| 570 |
+
"Sakawa": 481,
|
| 571 |
+
"Salt Lake City": 482,
|
| 572 |
+
"San Diego": 483,
|
| 573 |
+
"San Francisco": 484,
|
| 574 |
+
"San Juan": 485,
|
| 575 |
+
"Saraana": 486,
|
| 576 |
+
"Saratoga": 487,
|
| 577 |
+
"Scharnhorst": 488,
|
| 578 |
+
"Scharnhorst META": 489,
|
| 579 |
+
"Scylla": 490,
|
| 580 |
+
"Seattle": 491,
|
| 581 |
+
"Sendai": 492,
|
| 582 |
+
"Serri Glaus": 493,
|
| 583 |
+
"Sevastopol": 494,
|
| 584 |
+
"Seydlitz": 495,
|
| 585 |
+
"Shangri-La": 496,
|
| 586 |
+
"Sheffield": 497,
|
| 587 |
+
"Sheffield META": 498,
|
| 588 |
+
"Shigure": 499,
|
| 589 |
+
"Shimakaze": 500,
|
| 590 |
+
"Shinano": 501,
|
| 591 |
+
"Shinjou Akane": 502,
|
| 592 |
+
"Shirakami Fubuki": 503,
|
| 593 |
+
"Shiranui": 504,
|
| 594 |
+
"Shiratsuyu": 505,
|
| 595 |
+
"Shirayuki": 506,
|
| 596 |
+
"Shouhou": 507,
|
| 597 |
+
"Shoukaku": 508,
|
| 598 |
+
"Shropshire": 509,
|
| 599 |
+
"Sims": 510,
|
| 600 |
+
"Sirius": 511,
|
| 601 |
+
"Smalley": 512,
|
| 602 |
+
"Soobrazitelny": 513,
|
| 603 |
+
"Souryuu": 514,
|
| 604 |
+
"Souryuu META": 515,
|
| 605 |
+
"South Dakota": 516,
|
| 606 |
+
"Southampton": 517,
|
| 607 |
+
"Sovetskaya Belorussiya": 518,
|
| 608 |
+
"Sovetskaya Rossiya": 519,
|
| 609 |
+
"Specialized Bulin Custom MKIII": 520,
|
| 610 |
+
"Spence": 521,
|
| 611 |
+
"St.Louis": 522,
|
| 612 |
+
"Stanly": 523,
|
| 613 |
+
"Stephen Potter": 524,
|
| 614 |
+
"Stremitelny": 525,
|
| 615 |
+
"Suffolk": 526,
|
| 616 |
+
"Surcouf": 527,
|
| 617 |
+
"Suruga": 528,
|
| 618 |
+
"Sussex": 529,
|
| 619 |
+
"Suzutsuki": 530,
|
| 620 |
+
"Suzuya": 531,
|
| 621 |
+
"Swiftsure": 532,
|
| 622 |
+
"Tai Yuan": 533,
|
| 623 |
+
"Taihou": 534,
|
| 624 |
+
"Taihou-chan": 535,
|
| 625 |
+
"Takao": 536,
|
| 626 |
+
"Takarada Rikka": 537,
|
| 627 |
+
"Tallinn": 538,
|
| 628 |
+
"Tamaki": 539,
|
| 629 |
+
"Tanikaze": 540,
|
| 630 |
+
"Tartu": 541,
|
| 631 |
+
"Tashkent": 542,
|
| 632 |
+
"Tennessee": 543,
|
| 633 |
+
"Terror": 544,
|
| 634 |
+
"Thatcher": 545,
|
| 635 |
+
"Theseus": 546,
|
| 636 |
+
"Th\u00fcringen": 547,
|
| 637 |
+
"Ticonderoga": 548,
|
| 638 |
+
"Ting An": 549,
|
| 639 |
+
"Tirpitz": 550,
|
| 640 |
+
"Tokino Sora": 551,
|
| 641 |
+
"Torricelli": 552,
|
| 642 |
+
"Tosa": 553,
|
| 643 |
+
"Trento": 554,
|
| 644 |
+
"Trento META": 555,
|
| 645 |
+
"Trial Bulin MKII": 556,
|
| 646 |
+
"Trieste": 557,
|
| 647 |
+
"U-101": 558,
|
| 648 |
+
"U-110": 559,
|
| 649 |
+
"U-1206": 560,
|
| 650 |
+
"U-37": 561,
|
| 651 |
+
"U-410": 562,
|
| 652 |
+
"U-47": 563,
|
| 653 |
+
"U-522": 564,
|
| 654 |
+
"U-556": 565,
|
| 655 |
+
"U-556 META": 566,
|
| 656 |
+
"U-557": 567,
|
| 657 |
+
"U-73": 568,
|
| 658 |
+
"U-81": 569,
|
| 659 |
+
"U-96": 570,
|
| 660 |
+
"Ulrich von Hutten": 571,
|
| 661 |
+
"Umikaze": 572,
|
| 662 |
+
"Unicorn": 573,
|
| 663 |
+
"Universal Bullin": 574,
|
| 664 |
+
"Urakaze": 575,
|
| 665 |
+
"Uranami": 576,
|
| 666 |
+
"Uruuru": 577,
|
| 667 |
+
"Uzuki": 578,
|
| 668 |
+
"Valiant": 579,
|
| 669 |
+
"Vampire": 580,
|
| 670 |
+
"Vanguard": 581,
|
| 671 |
+
"Vauquelin": 582,
|
| 672 |
+
"Vert": 583,
|
| 673 |
+
"Vestal": 584,
|
| 674 |
+
"Vestal META": 585,
|
| 675 |
+
"Victorious": 586,
|
| 676 |
+
"Vincennes": 587,
|
| 677 |
+
"Vincenzo Gioberti": 588,
|
| 678 |
+
"Vittorio Veneto": 589,
|
| 679 |
+
"Volga": 590,
|
| 680 |
+
"Voroshilov": 591,
|
| 681 |
+
"Wakaba": 592,
|
| 682 |
+
"Wakatsuki": 593,
|
| 683 |
+
"Warspite": 594,
|
| 684 |
+
"Washington": 595,
|
| 685 |
+
"Wasp": 596,
|
| 686 |
+
"Weser": 597,
|
| 687 |
+
"West Virginia": 598,
|
| 688 |
+
"White Heart": 599,
|
| 689 |
+
"Wichita": 600,
|
| 690 |
+
"Wilhelm Heidkamp": 601,
|
| 691 |
+
"Yamakaze": 602,
|
| 692 |
+
"Yamashiro": 603,
|
| 693 |
+
"Yamashiro META": 604,
|
| 694 |
+
"Yat Sen": 605,
|
| 695 |
+
"Ying Swei": 606,
|
| 696 |
+
"Yoizuki": 607,
|
| 697 |
+
"Yorck": 608,
|
| 698 |
+
"York": 609,
|
| 699 |
+
"Yorktown": 610,
|
| 700 |
+
"Yorktown II": 611,
|
| 701 |
+
"Yukikaze": 612,
|
| 702 |
+
"Yura": 613,
|
| 703 |
+
"Yuubari": 614,
|
| 704 |
+
"Yuudachi": 615,
|
| 705 |
+
"Yuugure": 616,
|
| 706 |
+
"Z16": 617,
|
| 707 |
+
"Z23": 618,
|
| 708 |
+
"Z24": 619,
|
| 709 |
+
"Z25": 620,
|
| 710 |
+
"Z26": 621,
|
| 711 |
+
"Z28": 622,
|
| 712 |
+
"Z35": 623,
|
| 713 |
+
"Z36": 624,
|
| 714 |
+
"Z46": 625,
|
| 715 |
+
"Zara": 626,
|
| 716 |
+
"Zeppelin-chan": 627,
|
| 717 |
+
"Zuikaku": 628,
|
| 718 |
+
"\u00c4gir": 629,
|
| 719 |
+
"\u00c9mile Bertin": 630
|
| 720 |
+
},
|
| 721 |
+
"symbols": [
|
| 722 |
+
"_",
|
| 723 |
+
",",
|
| 724 |
+
".",
|
| 725 |
+
"!",
|
| 726 |
+
"?",
|
| 727 |
+
"-",
|
| 728 |
+
"~",
|
| 729 |
+
"\u2026",
|
| 730 |
+
"A",
|
| 731 |
+
"E",
|
| 732 |
+
"I",
|
| 733 |
+
"N",
|
| 734 |
+
"O",
|
| 735 |
+
"Q",
|
| 736 |
+
"U",
|
| 737 |
+
"a",
|
| 738 |
+
"b",
|
| 739 |
+
"d",
|
| 740 |
+
"e",
|
| 741 |
+
"f",
|
| 742 |
+
"g",
|
| 743 |
+
"h",
|
| 744 |
+
"i",
|
| 745 |
+
"j",
|
| 746 |
+
"k",
|
| 747 |
+
"l",
|
| 748 |
+
"m",
|
| 749 |
+
"n",
|
| 750 |
+
"o",
|
| 751 |
+
"p",
|
| 752 |
+
"r",
|
| 753 |
+
"s",
|
| 754 |
+
"t",
|
| 755 |
+
"u",
|
| 756 |
+
"v",
|
| 757 |
+
"w",
|
| 758 |
+
"y",
|
| 759 |
+
"z",
|
| 760 |
+
"\u0283",
|
| 761 |
+
"\u02a7",
|
| 762 |
+
"\u02a6",
|
| 763 |
+
"\u026f",
|
| 764 |
+
"\u0279",
|
| 765 |
+
"\u0259",
|
| 766 |
+
"\u0265",
|
| 767 |
+
"\u207c",
|
| 768 |
+
"\u02b0",
|
| 769 |
+
"`",
|
| 770 |
+
"\u2192",
|
| 771 |
+
"\u2193",
|
| 772 |
+
"\u2191",
|
| 773 |
+
" "
|
| 774 |
+
]
|
| 775 |
+
}
|
models.py
ADDED
|
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
import commons
|
| 8 |
+
import modules
|
| 9 |
+
import attentions
|
| 10 |
+
import monotonic_align
|
| 11 |
+
|
| 12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 14 |
+
from commons import init_weights, get_padding
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class StochasticDurationPredictor(nn.Module):
|
| 18 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
| 19 |
+
super().__init__()
|
| 20 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
| 21 |
+
self.in_channels = in_channels
|
| 22 |
+
self.filter_channels = filter_channels
|
| 23 |
+
self.kernel_size = kernel_size
|
| 24 |
+
self.p_dropout = p_dropout
|
| 25 |
+
self.n_flows = n_flows
|
| 26 |
+
self.gin_channels = gin_channels
|
| 27 |
+
|
| 28 |
+
self.log_flow = modules.Log()
|
| 29 |
+
self.flows = nn.ModuleList()
|
| 30 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
| 31 |
+
for i in range(n_flows):
|
| 32 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
| 33 |
+
self.flows.append(modules.Flip())
|
| 34 |
+
|
| 35 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
| 36 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 37 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
| 38 |
+
self.post_flows = nn.ModuleList()
|
| 39 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
| 40 |
+
for i in range(4):
|
| 41 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
| 42 |
+
self.post_flows.append(modules.Flip())
|
| 43 |
+
|
| 44 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
| 45 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 46 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
| 47 |
+
if gin_channels != 0:
|
| 48 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
| 49 |
+
|
| 50 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
| 51 |
+
x = torch.detach(x)
|
| 52 |
+
x = self.pre(x)
|
| 53 |
+
if g is not None:
|
| 54 |
+
g = torch.detach(g)
|
| 55 |
+
x = x + self.cond(g)
|
| 56 |
+
x = self.convs(x, x_mask)
|
| 57 |
+
x = self.proj(x) * x_mask
|
| 58 |
+
|
| 59 |
+
if not reverse:
|
| 60 |
+
flows = self.flows
|
| 61 |
+
assert w is not None
|
| 62 |
+
|
| 63 |
+
logdet_tot_q = 0
|
| 64 |
+
h_w = self.post_pre(w)
|
| 65 |
+
h_w = self.post_convs(h_w, x_mask)
|
| 66 |
+
h_w = self.post_proj(h_w) * x_mask
|
| 67 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
| 68 |
+
z_q = e_q
|
| 69 |
+
for flow in self.post_flows:
|
| 70 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
| 71 |
+
logdet_tot_q += logdet_q
|
| 72 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
| 73 |
+
u = torch.sigmoid(z_u) * x_mask
|
| 74 |
+
z0 = (w - u) * x_mask
|
| 75 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
| 76 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
| 77 |
+
|
| 78 |
+
logdet_tot = 0
|
| 79 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
| 80 |
+
logdet_tot += logdet
|
| 81 |
+
z = torch.cat([z0, z1], 1)
|
| 82 |
+
for flow in flows:
|
| 83 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
| 84 |
+
logdet_tot = logdet_tot + logdet
|
| 85 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
| 86 |
+
return nll + logq # [b]
|
| 87 |
+
else:
|
| 88 |
+
flows = list(reversed(self.flows))
|
| 89 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
| 90 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
| 91 |
+
for flow in flows:
|
| 92 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
| 93 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
| 94 |
+
logw = z0
|
| 95 |
+
return logw
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class DurationPredictor(nn.Module):
|
| 99 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
| 100 |
+
super().__init__()
|
| 101 |
+
|
| 102 |
+
self.in_channels = in_channels
|
| 103 |
+
self.filter_channels = filter_channels
|
| 104 |
+
self.kernel_size = kernel_size
|
| 105 |
+
self.p_dropout = p_dropout
|
| 106 |
+
self.gin_channels = gin_channels
|
| 107 |
+
|
| 108 |
+
self.drop = nn.Dropout(p_dropout)
|
| 109 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
| 110 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
| 111 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
| 112 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
| 113 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
| 114 |
+
|
| 115 |
+
if gin_channels != 0:
|
| 116 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
| 117 |
+
|
| 118 |
+
def forward(self, x, x_mask, g=None):
|
| 119 |
+
x = torch.detach(x)
|
| 120 |
+
if g is not None:
|
| 121 |
+
g = torch.detach(g)
|
| 122 |
+
x = x + self.cond(g)
|
| 123 |
+
x = self.conv_1(x * x_mask)
|
| 124 |
+
x = torch.relu(x)
|
| 125 |
+
x = self.norm_1(x)
|
| 126 |
+
x = self.drop(x)
|
| 127 |
+
x = self.conv_2(x * x_mask)
|
| 128 |
+
x = torch.relu(x)
|
| 129 |
+
x = self.norm_2(x)
|
| 130 |
+
x = self.drop(x)
|
| 131 |
+
x = self.proj(x * x_mask)
|
| 132 |
+
return x * x_mask
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class TextEncoder(nn.Module):
|
| 136 |
+
def __init__(self,
|
| 137 |
+
n_vocab,
|
| 138 |
+
out_channels,
|
| 139 |
+
hidden_channels,
|
| 140 |
+
filter_channels,
|
| 141 |
+
n_heads,
|
| 142 |
+
n_layers,
|
| 143 |
+
kernel_size,
|
| 144 |
+
p_dropout):
|
| 145 |
+
super().__init__()
|
| 146 |
+
self.n_vocab = n_vocab
|
| 147 |
+
self.out_channels = out_channels
|
| 148 |
+
self.hidden_channels = hidden_channels
|
| 149 |
+
self.filter_channels = filter_channels
|
| 150 |
+
self.n_heads = n_heads
|
| 151 |
+
self.n_layers = n_layers
|
| 152 |
+
self.kernel_size = kernel_size
|
| 153 |
+
self.p_dropout = p_dropout
|
| 154 |
+
|
| 155 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
| 156 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
| 157 |
+
|
| 158 |
+
self.encoder = attentions.Encoder(
|
| 159 |
+
hidden_channels,
|
| 160 |
+
filter_channels,
|
| 161 |
+
n_heads,
|
| 162 |
+
n_layers,
|
| 163 |
+
kernel_size,
|
| 164 |
+
p_dropout)
|
| 165 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 166 |
+
|
| 167 |
+
def forward(self, x, x_lengths):
|
| 168 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 169 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 170 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
| 171 |
+
|
| 172 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 173 |
+
stats = self.proj(x) * x_mask
|
| 174 |
+
|
| 175 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 176 |
+
return x, m, logs, x_mask
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class ResidualCouplingBlock(nn.Module):
|
| 180 |
+
def __init__(self,
|
| 181 |
+
channels,
|
| 182 |
+
hidden_channels,
|
| 183 |
+
kernel_size,
|
| 184 |
+
dilation_rate,
|
| 185 |
+
n_layers,
|
| 186 |
+
n_flows=4,
|
| 187 |
+
gin_channels=0):
|
| 188 |
+
super().__init__()
|
| 189 |
+
self.channels = channels
|
| 190 |
+
self.hidden_channels = hidden_channels
|
| 191 |
+
self.kernel_size = kernel_size
|
| 192 |
+
self.dilation_rate = dilation_rate
|
| 193 |
+
self.n_layers = n_layers
|
| 194 |
+
self.n_flows = n_flows
|
| 195 |
+
self.gin_channels = gin_channels
|
| 196 |
+
|
| 197 |
+
self.flows = nn.ModuleList()
|
| 198 |
+
for i in range(n_flows):
|
| 199 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
| 200 |
+
self.flows.append(modules.Flip())
|
| 201 |
+
|
| 202 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 203 |
+
if not reverse:
|
| 204 |
+
for flow in self.flows:
|
| 205 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 206 |
+
else:
|
| 207 |
+
for flow in reversed(self.flows):
|
| 208 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 209 |
+
return x
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class PosteriorEncoder(nn.Module):
|
| 213 |
+
def __init__(self,
|
| 214 |
+
in_channels,
|
| 215 |
+
out_channels,
|
| 216 |
+
hidden_channels,
|
| 217 |
+
kernel_size,
|
| 218 |
+
dilation_rate,
|
| 219 |
+
n_layers,
|
| 220 |
+
gin_channels=0):
|
| 221 |
+
super().__init__()
|
| 222 |
+
self.in_channels = in_channels
|
| 223 |
+
self.out_channels = out_channels
|
| 224 |
+
self.hidden_channels = hidden_channels
|
| 225 |
+
self.kernel_size = kernel_size
|
| 226 |
+
self.dilation_rate = dilation_rate
|
| 227 |
+
self.n_layers = n_layers
|
| 228 |
+
self.gin_channels = gin_channels
|
| 229 |
+
|
| 230 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 231 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
| 232 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 233 |
+
|
| 234 |
+
def forward(self, x, x_lengths, g=None):
|
| 235 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
| 236 |
+
x = self.pre(x) * x_mask
|
| 237 |
+
x = self.enc(x, x_mask, g=g)
|
| 238 |
+
stats = self.proj(x) * x_mask
|
| 239 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 240 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 241 |
+
return z, m, logs, x_mask
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class Generator(torch.nn.Module):
|
| 245 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
| 246 |
+
super(Generator, self).__init__()
|
| 247 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 248 |
+
self.num_upsamples = len(upsample_rates)
|
| 249 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
| 250 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
| 251 |
+
|
| 252 |
+
self.ups = nn.ModuleList()
|
| 253 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 254 |
+
self.ups.append(weight_norm(
|
| 255 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
| 256 |
+
k, u, padding=(k-u)//2)))
|
| 257 |
+
|
| 258 |
+
self.resblocks = nn.ModuleList()
|
| 259 |
+
for i in range(len(self.ups)):
|
| 260 |
+
ch = upsample_initial_channel//(2**(i+1))
|
| 261 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
| 262 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 263 |
+
|
| 264 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 265 |
+
self.ups.apply(init_weights)
|
| 266 |
+
|
| 267 |
+
if gin_channels != 0:
|
| 268 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 269 |
+
|
| 270 |
+
def forward(self, x, g=None):
|
| 271 |
+
x = self.conv_pre(x)
|
| 272 |
+
if g is not None:
|
| 273 |
+
x = x + self.cond(g)
|
| 274 |
+
|
| 275 |
+
for i in range(self.num_upsamples):
|
| 276 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 277 |
+
x = self.ups[i](x)
|
| 278 |
+
xs = None
|
| 279 |
+
for j in range(self.num_kernels):
|
| 280 |
+
if xs is None:
|
| 281 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
| 282 |
+
else:
|
| 283 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
| 284 |
+
x = xs / self.num_kernels
|
| 285 |
+
x = F.leaky_relu(x)
|
| 286 |
+
x = self.conv_post(x)
|
| 287 |
+
x = torch.tanh(x)
|
| 288 |
+
|
| 289 |
+
return x
|
| 290 |
+
|
| 291 |
+
def remove_weight_norm(self):
|
| 292 |
+
print('Removing weight norm...')
|
| 293 |
+
for l in self.ups:
|
| 294 |
+
remove_weight_norm(l)
|
| 295 |
+
for l in self.resblocks:
|
| 296 |
+
l.remove_weight_norm()
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
class DiscriminatorP(torch.nn.Module):
|
| 300 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 301 |
+
super(DiscriminatorP, self).__init__()
|
| 302 |
+
self.period = period
|
| 303 |
+
self.use_spectral_norm = use_spectral_norm
|
| 304 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 305 |
+
self.convs = nn.ModuleList([
|
| 306 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
| 307 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
| 308 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
| 309 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
| 310 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
| 311 |
+
])
|
| 312 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 313 |
+
|
| 314 |
+
def forward(self, x):
|
| 315 |
+
fmap = []
|
| 316 |
+
|
| 317 |
+
# 1d to 2d
|
| 318 |
+
b, c, t = x.shape
|
| 319 |
+
if t % self.period != 0: # pad first
|
| 320 |
+
n_pad = self.period - (t % self.period)
|
| 321 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 322 |
+
t = t + n_pad
|
| 323 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 324 |
+
|
| 325 |
+
for l in self.convs:
|
| 326 |
+
x = l(x)
|
| 327 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 328 |
+
fmap.append(x)
|
| 329 |
+
x = self.conv_post(x)
|
| 330 |
+
fmap.append(x)
|
| 331 |
+
x = torch.flatten(x, 1, -1)
|
| 332 |
+
|
| 333 |
+
return x, fmap
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
class DiscriminatorS(torch.nn.Module):
|
| 337 |
+
def __init__(self, use_spectral_norm=False):
|
| 338 |
+
super(DiscriminatorS, self).__init__()
|
| 339 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 340 |
+
self.convs = nn.ModuleList([
|
| 341 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 342 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 343 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 344 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 345 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 346 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 347 |
+
])
|
| 348 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 349 |
+
|
| 350 |
+
def forward(self, x):
|
| 351 |
+
fmap = []
|
| 352 |
+
|
| 353 |
+
for l in self.convs:
|
| 354 |
+
x = l(x)
|
| 355 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 356 |
+
fmap.append(x)
|
| 357 |
+
x = self.conv_post(x)
|
| 358 |
+
fmap.append(x)
|
| 359 |
+
x = torch.flatten(x, 1, -1)
|
| 360 |
+
|
| 361 |
+
return x, fmap
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 365 |
+
def __init__(self, use_spectral_norm=False):
|
| 366 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 367 |
+
periods = [2,3,5,7,11]
|
| 368 |
+
|
| 369 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 370 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
| 371 |
+
self.discriminators = nn.ModuleList(discs)
|
| 372 |
+
|
| 373 |
+
def forward(self, y, y_hat):
|
| 374 |
+
y_d_rs = []
|
| 375 |
+
y_d_gs = []
|
| 376 |
+
fmap_rs = []
|
| 377 |
+
fmap_gs = []
|
| 378 |
+
for i, d in enumerate(self.discriminators):
|
| 379 |
+
y_d_r, fmap_r = d(y)
|
| 380 |
+
y_d_g, fmap_g = d(y_hat)
|
| 381 |
+
y_d_rs.append(y_d_r)
|
| 382 |
+
y_d_gs.append(y_d_g)
|
| 383 |
+
fmap_rs.append(fmap_r)
|
| 384 |
+
fmap_gs.append(fmap_g)
|
| 385 |
+
|
| 386 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
class SynthesizerTrn(nn.Module):
|
| 391 |
+
"""
|
| 392 |
+
Synthesizer for Training
|
| 393 |
+
"""
|
| 394 |
+
|
| 395 |
+
def __init__(self,
|
| 396 |
+
n_vocab,
|
| 397 |
+
spec_channels,
|
| 398 |
+
segment_size,
|
| 399 |
+
inter_channels,
|
| 400 |
+
hidden_channels,
|
| 401 |
+
filter_channels,
|
| 402 |
+
n_heads,
|
| 403 |
+
n_layers,
|
| 404 |
+
kernel_size,
|
| 405 |
+
p_dropout,
|
| 406 |
+
resblock,
|
| 407 |
+
resblock_kernel_sizes,
|
| 408 |
+
resblock_dilation_sizes,
|
| 409 |
+
upsample_rates,
|
| 410 |
+
upsample_initial_channel,
|
| 411 |
+
upsample_kernel_sizes,
|
| 412 |
+
n_speakers=0,
|
| 413 |
+
gin_channels=0,
|
| 414 |
+
use_sdp=True,
|
| 415 |
+
**kwargs):
|
| 416 |
+
|
| 417 |
+
super().__init__()
|
| 418 |
+
self.n_vocab = n_vocab
|
| 419 |
+
self.spec_channels = spec_channels
|
| 420 |
+
self.inter_channels = inter_channels
|
| 421 |
+
self.hidden_channels = hidden_channels
|
| 422 |
+
self.filter_channels = filter_channels
|
| 423 |
+
self.n_heads = n_heads
|
| 424 |
+
self.n_layers = n_layers
|
| 425 |
+
self.kernel_size = kernel_size
|
| 426 |
+
self.p_dropout = p_dropout
|
| 427 |
+
self.resblock = resblock
|
| 428 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 429 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 430 |
+
self.upsample_rates = upsample_rates
|
| 431 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 432 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 433 |
+
self.segment_size = segment_size
|
| 434 |
+
self.n_speakers = n_speakers
|
| 435 |
+
self.gin_channels = gin_channels
|
| 436 |
+
|
| 437 |
+
self.use_sdp = use_sdp
|
| 438 |
+
|
| 439 |
+
self.enc_p = TextEncoder(n_vocab,
|
| 440 |
+
inter_channels,
|
| 441 |
+
hidden_channels,
|
| 442 |
+
filter_channels,
|
| 443 |
+
n_heads,
|
| 444 |
+
n_layers,
|
| 445 |
+
kernel_size,
|
| 446 |
+
p_dropout)
|
| 447 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
| 448 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
| 449 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
| 450 |
+
|
| 451 |
+
if use_sdp:
|
| 452 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
| 453 |
+
else:
|
| 454 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
| 455 |
+
|
| 456 |
+
if n_speakers >= 1:
|
| 457 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
| 458 |
+
|
| 459 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
| 460 |
+
|
| 461 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
| 462 |
+
if self.n_speakers > 0:
|
| 463 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 464 |
+
else:
|
| 465 |
+
g = None
|
| 466 |
+
|
| 467 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 468 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 469 |
+
|
| 470 |
+
with torch.no_grad():
|
| 471 |
+
# negative cross-entropy
|
| 472 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
| 473 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
| 474 |
+
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 475 |
+
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 476 |
+
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
| 477 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
| 478 |
+
|
| 479 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 480 |
+
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
| 481 |
+
|
| 482 |
+
w = attn.sum(2)
|
| 483 |
+
if self.use_sdp:
|
| 484 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
| 485 |
+
l_length = l_length / torch.sum(x_mask)
|
| 486 |
+
else:
|
| 487 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
| 488 |
+
logw = self.dp(x, x_mask, g=g)
|
| 489 |
+
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
| 490 |
+
|
| 491 |
+
# expand prior
|
| 492 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
| 493 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
| 494 |
+
|
| 495 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
| 496 |
+
o = self.dec(z_slice, g=g)
|
| 497 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 498 |
+
|
| 499 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
| 500 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
| 501 |
+
if self.n_speakers > 0:
|
| 502 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 503 |
+
else:
|
| 504 |
+
g = None
|
| 505 |
+
|
| 506 |
+
if self.use_sdp:
|
| 507 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
| 508 |
+
else:
|
| 509 |
+
logw = self.dp(x, x_mask, g=g)
|
| 510 |
+
w = torch.exp(logw) * x_mask * length_scale
|
| 511 |
+
w_ceil = torch.ceil(w)
|
| 512 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
| 513 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
| 514 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 515 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
| 516 |
+
|
| 517 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 518 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 519 |
+
|
| 520 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
| 521 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
| 522 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
| 523 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
| 524 |
+
|
| 525 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
| 526 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
| 527 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
| 528 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
| 529 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
| 530 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
| 531 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
| 532 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
| 533 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
modules.py
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import scipy
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import functional as F
|
| 8 |
+
|
| 9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
| 11 |
+
|
| 12 |
+
import commons
|
| 13 |
+
from commons import init_weights, get_padding
|
| 14 |
+
from transforms import piecewise_rational_quadratic_transform
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
LRELU_SLOPE = 0.1
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class LayerNorm(nn.Module):
|
| 21 |
+
def __init__(self, channels, eps=1e-5):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.channels = channels
|
| 24 |
+
self.eps = eps
|
| 25 |
+
|
| 26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
| 27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
| 28 |
+
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
x = x.transpose(1, -1)
|
| 31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
| 32 |
+
return x.transpose(1, -1)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class ConvReluNorm(nn.Module):
|
| 36 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.in_channels = in_channels
|
| 39 |
+
self.hidden_channels = hidden_channels
|
| 40 |
+
self.out_channels = out_channels
|
| 41 |
+
self.kernel_size = kernel_size
|
| 42 |
+
self.n_layers = n_layers
|
| 43 |
+
self.p_dropout = p_dropout
|
| 44 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
| 45 |
+
|
| 46 |
+
self.conv_layers = nn.ModuleList()
|
| 47 |
+
self.norm_layers = nn.ModuleList()
|
| 48 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
| 49 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
| 50 |
+
self.relu_drop = nn.Sequential(
|
| 51 |
+
nn.ReLU(),
|
| 52 |
+
nn.Dropout(p_dropout))
|
| 53 |
+
for _ in range(n_layers-1):
|
| 54 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
| 55 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
| 56 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
| 57 |
+
self.proj.weight.data.zero_()
|
| 58 |
+
self.proj.bias.data.zero_()
|
| 59 |
+
|
| 60 |
+
def forward(self, x, x_mask):
|
| 61 |
+
x_org = x
|
| 62 |
+
for i in range(self.n_layers):
|
| 63 |
+
x = self.conv_layers[i](x * x_mask)
|
| 64 |
+
x = self.norm_layers[i](x)
|
| 65 |
+
x = self.relu_drop(x)
|
| 66 |
+
x = x_org + self.proj(x)
|
| 67 |
+
return x * x_mask
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class DDSConv(nn.Module):
|
| 71 |
+
"""
|
| 72 |
+
Dialted and Depth-Separable Convolution
|
| 73 |
+
"""
|
| 74 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
| 75 |
+
super().__init__()
|
| 76 |
+
self.channels = channels
|
| 77 |
+
self.kernel_size = kernel_size
|
| 78 |
+
self.n_layers = n_layers
|
| 79 |
+
self.p_dropout = p_dropout
|
| 80 |
+
|
| 81 |
+
self.drop = nn.Dropout(p_dropout)
|
| 82 |
+
self.convs_sep = nn.ModuleList()
|
| 83 |
+
self.convs_1x1 = nn.ModuleList()
|
| 84 |
+
self.norms_1 = nn.ModuleList()
|
| 85 |
+
self.norms_2 = nn.ModuleList()
|
| 86 |
+
for i in range(n_layers):
|
| 87 |
+
dilation = kernel_size ** i
|
| 88 |
+
padding = (kernel_size * dilation - dilation) // 2
|
| 89 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
| 90 |
+
groups=channels, dilation=dilation, padding=padding
|
| 91 |
+
))
|
| 92 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
| 93 |
+
self.norms_1.append(LayerNorm(channels))
|
| 94 |
+
self.norms_2.append(LayerNorm(channels))
|
| 95 |
+
|
| 96 |
+
def forward(self, x, x_mask, g=None):
|
| 97 |
+
if g is not None:
|
| 98 |
+
x = x + g
|
| 99 |
+
for i in range(self.n_layers):
|
| 100 |
+
y = self.convs_sep[i](x * x_mask)
|
| 101 |
+
y = self.norms_1[i](y)
|
| 102 |
+
y = F.gelu(y)
|
| 103 |
+
y = self.convs_1x1[i](y)
|
| 104 |
+
y = self.norms_2[i](y)
|
| 105 |
+
y = F.gelu(y)
|
| 106 |
+
y = self.drop(y)
|
| 107 |
+
x = x + y
|
| 108 |
+
return x * x_mask
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class WN(torch.nn.Module):
|
| 112 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
| 113 |
+
super(WN, self).__init__()
|
| 114 |
+
assert(kernel_size % 2 == 1)
|
| 115 |
+
self.hidden_channels =hidden_channels
|
| 116 |
+
self.kernel_size = kernel_size,
|
| 117 |
+
self.dilation_rate = dilation_rate
|
| 118 |
+
self.n_layers = n_layers
|
| 119 |
+
self.gin_channels = gin_channels
|
| 120 |
+
self.p_dropout = p_dropout
|
| 121 |
+
|
| 122 |
+
self.in_layers = torch.nn.ModuleList()
|
| 123 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
| 124 |
+
self.drop = nn.Dropout(p_dropout)
|
| 125 |
+
|
| 126 |
+
if gin_channels != 0:
|
| 127 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
| 128 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
| 129 |
+
|
| 130 |
+
for i in range(n_layers):
|
| 131 |
+
dilation = dilation_rate ** i
|
| 132 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
| 133 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
| 134 |
+
dilation=dilation, padding=padding)
|
| 135 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
| 136 |
+
self.in_layers.append(in_layer)
|
| 137 |
+
|
| 138 |
+
# last one is not necessary
|
| 139 |
+
if i < n_layers - 1:
|
| 140 |
+
res_skip_channels = 2 * hidden_channels
|
| 141 |
+
else:
|
| 142 |
+
res_skip_channels = hidden_channels
|
| 143 |
+
|
| 144 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
| 145 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
| 146 |
+
self.res_skip_layers.append(res_skip_layer)
|
| 147 |
+
|
| 148 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
| 149 |
+
output = torch.zeros_like(x)
|
| 150 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
| 151 |
+
|
| 152 |
+
if g is not None:
|
| 153 |
+
g = self.cond_layer(g)
|
| 154 |
+
|
| 155 |
+
for i in range(self.n_layers):
|
| 156 |
+
x_in = self.in_layers[i](x)
|
| 157 |
+
if g is not None:
|
| 158 |
+
cond_offset = i * 2 * self.hidden_channels
|
| 159 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
| 160 |
+
else:
|
| 161 |
+
g_l = torch.zeros_like(x_in)
|
| 162 |
+
|
| 163 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
| 164 |
+
x_in,
|
| 165 |
+
g_l,
|
| 166 |
+
n_channels_tensor)
|
| 167 |
+
acts = self.drop(acts)
|
| 168 |
+
|
| 169 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
| 170 |
+
if i < self.n_layers - 1:
|
| 171 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
| 172 |
+
x = (x + res_acts) * x_mask
|
| 173 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
| 174 |
+
else:
|
| 175 |
+
output = output + res_skip_acts
|
| 176 |
+
return output * x_mask
|
| 177 |
+
|
| 178 |
+
def remove_weight_norm(self):
|
| 179 |
+
if self.gin_channels != 0:
|
| 180 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
| 181 |
+
for l in self.in_layers:
|
| 182 |
+
torch.nn.utils.remove_weight_norm(l)
|
| 183 |
+
for l in self.res_skip_layers:
|
| 184 |
+
torch.nn.utils.remove_weight_norm(l)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
class ResBlock1(torch.nn.Module):
|
| 188 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
| 189 |
+
super(ResBlock1, self).__init__()
|
| 190 |
+
self.convs1 = nn.ModuleList([
|
| 191 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 192 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 193 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 194 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
| 195 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
| 196 |
+
padding=get_padding(kernel_size, dilation[2])))
|
| 197 |
+
])
|
| 198 |
+
self.convs1.apply(init_weights)
|
| 199 |
+
|
| 200 |
+
self.convs2 = nn.ModuleList([
|
| 201 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 202 |
+
padding=get_padding(kernel_size, 1))),
|
| 203 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 204 |
+
padding=get_padding(kernel_size, 1))),
|
| 205 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 206 |
+
padding=get_padding(kernel_size, 1)))
|
| 207 |
+
])
|
| 208 |
+
self.convs2.apply(init_weights)
|
| 209 |
+
|
| 210 |
+
def forward(self, x, x_mask=None):
|
| 211 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
| 212 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 213 |
+
if x_mask is not None:
|
| 214 |
+
xt = xt * x_mask
|
| 215 |
+
xt = c1(xt)
|
| 216 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
| 217 |
+
if x_mask is not None:
|
| 218 |
+
xt = xt * x_mask
|
| 219 |
+
xt = c2(xt)
|
| 220 |
+
x = xt + x
|
| 221 |
+
if x_mask is not None:
|
| 222 |
+
x = x * x_mask
|
| 223 |
+
return x
|
| 224 |
+
|
| 225 |
+
def remove_weight_norm(self):
|
| 226 |
+
for l in self.convs1:
|
| 227 |
+
remove_weight_norm(l)
|
| 228 |
+
for l in self.convs2:
|
| 229 |
+
remove_weight_norm(l)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
class ResBlock2(torch.nn.Module):
|
| 233 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
| 234 |
+
super(ResBlock2, self).__init__()
|
| 235 |
+
self.convs = nn.ModuleList([
|
| 236 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 237 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 238 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 239 |
+
padding=get_padding(kernel_size, dilation[1])))
|
| 240 |
+
])
|
| 241 |
+
self.convs.apply(init_weights)
|
| 242 |
+
|
| 243 |
+
def forward(self, x, x_mask=None):
|
| 244 |
+
for c in self.convs:
|
| 245 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 246 |
+
if x_mask is not None:
|
| 247 |
+
xt = xt * x_mask
|
| 248 |
+
xt = c(xt)
|
| 249 |
+
x = xt + x
|
| 250 |
+
if x_mask is not None:
|
| 251 |
+
x = x * x_mask
|
| 252 |
+
return x
|
| 253 |
+
|
| 254 |
+
def remove_weight_norm(self):
|
| 255 |
+
for l in self.convs:
|
| 256 |
+
remove_weight_norm(l)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
class Log(nn.Module):
|
| 260 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
| 261 |
+
if not reverse:
|
| 262 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
| 263 |
+
logdet = torch.sum(-y, [1, 2])
|
| 264 |
+
return y, logdet
|
| 265 |
+
else:
|
| 266 |
+
x = torch.exp(x) * x_mask
|
| 267 |
+
return x
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class Flip(nn.Module):
|
| 271 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
| 272 |
+
x = torch.flip(x, [1])
|
| 273 |
+
if not reverse:
|
| 274 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
| 275 |
+
return x, logdet
|
| 276 |
+
else:
|
| 277 |
+
return x
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class ElementwiseAffine(nn.Module):
|
| 281 |
+
def __init__(self, channels):
|
| 282 |
+
super().__init__()
|
| 283 |
+
self.channels = channels
|
| 284 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
| 285 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
| 286 |
+
|
| 287 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
| 288 |
+
if not reverse:
|
| 289 |
+
y = self.m + torch.exp(self.logs) * x
|
| 290 |
+
y = y * x_mask
|
| 291 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
| 292 |
+
return y, logdet
|
| 293 |
+
else:
|
| 294 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
| 295 |
+
return x
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
class ResidualCouplingLayer(nn.Module):
|
| 299 |
+
def __init__(self,
|
| 300 |
+
channels,
|
| 301 |
+
hidden_channels,
|
| 302 |
+
kernel_size,
|
| 303 |
+
dilation_rate,
|
| 304 |
+
n_layers,
|
| 305 |
+
p_dropout=0,
|
| 306 |
+
gin_channels=0,
|
| 307 |
+
mean_only=False):
|
| 308 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
| 309 |
+
super().__init__()
|
| 310 |
+
self.channels = channels
|
| 311 |
+
self.hidden_channels = hidden_channels
|
| 312 |
+
self.kernel_size = kernel_size
|
| 313 |
+
self.dilation_rate = dilation_rate
|
| 314 |
+
self.n_layers = n_layers
|
| 315 |
+
self.half_channels = channels // 2
|
| 316 |
+
self.mean_only = mean_only
|
| 317 |
+
|
| 318 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
| 319 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
| 320 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
| 321 |
+
self.post.weight.data.zero_()
|
| 322 |
+
self.post.bias.data.zero_()
|
| 323 |
+
|
| 324 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 325 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
| 326 |
+
h = self.pre(x0) * x_mask
|
| 327 |
+
h = self.enc(h, x_mask, g=g)
|
| 328 |
+
stats = self.post(h) * x_mask
|
| 329 |
+
if not self.mean_only:
|
| 330 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
| 331 |
+
else:
|
| 332 |
+
m = stats
|
| 333 |
+
logs = torch.zeros_like(m)
|
| 334 |
+
|
| 335 |
+
if not reverse:
|
| 336 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
| 337 |
+
x = torch.cat([x0, x1], 1)
|
| 338 |
+
logdet = torch.sum(logs, [1,2])
|
| 339 |
+
return x, logdet
|
| 340 |
+
else:
|
| 341 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
| 342 |
+
x = torch.cat([x0, x1], 1)
|
| 343 |
+
return x
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
class ConvFlow(nn.Module):
|
| 347 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
| 348 |
+
super().__init__()
|
| 349 |
+
self.in_channels = in_channels
|
| 350 |
+
self.filter_channels = filter_channels
|
| 351 |
+
self.kernel_size = kernel_size
|
| 352 |
+
self.n_layers = n_layers
|
| 353 |
+
self.num_bins = num_bins
|
| 354 |
+
self.tail_bound = tail_bound
|
| 355 |
+
self.half_channels = in_channels // 2
|
| 356 |
+
|
| 357 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
| 358 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
| 359 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
| 360 |
+
self.proj.weight.data.zero_()
|
| 361 |
+
self.proj.bias.data.zero_()
|
| 362 |
+
|
| 363 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 364 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
| 365 |
+
h = self.pre(x0)
|
| 366 |
+
h = self.convs(h, x_mask, g=g)
|
| 367 |
+
h = self.proj(h) * x_mask
|
| 368 |
+
|
| 369 |
+
b, c, t = x0.shape
|
| 370 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
| 371 |
+
|
| 372 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
| 373 |
+
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
| 374 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
| 375 |
+
|
| 376 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
| 377 |
+
unnormalized_widths,
|
| 378 |
+
unnormalized_heights,
|
| 379 |
+
unnormalized_derivatives,
|
| 380 |
+
inverse=reverse,
|
| 381 |
+
tails='linear',
|
| 382 |
+
tail_bound=self.tail_bound
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
| 386 |
+
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
| 387 |
+
if not reverse:
|
| 388 |
+
return x, logdet
|
| 389 |
+
else:
|
| 390 |
+
return x
|
monotonic_align/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from numpy import zeros, int32, float32
|
| 2 |
+
from torch import from_numpy
|
| 3 |
+
|
| 4 |
+
from .core import maximum_path_jit
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def maximum_path(neg_cent, mask):
|
| 8 |
+
""" numba optimized version.
|
| 9 |
+
neg_cent: [b, t_t, t_s]
|
| 10 |
+
mask: [b, t_t, t_s]
|
| 11 |
+
"""
|
| 12 |
+
device = neg_cent.device
|
| 13 |
+
dtype = neg_cent.dtype
|
| 14 |
+
neg_cent = neg_cent.data.cpu().numpy().astype(float32)
|
| 15 |
+
path = zeros(neg_cent.shape, dtype=int32)
|
| 16 |
+
|
| 17 |
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
|
| 18 |
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
|
| 19 |
+
maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
|
| 20 |
+
return from_numpy(path).to(device=device, dtype=dtype)
|
| 21 |
+
|
monotonic_align/core.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numba
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
@numba.jit(numba.void(numba.int32[:, :, ::1], numba.float32[:, :, ::1], numba.int32[::1], numba.int32[::1]),
|
| 5 |
+
nopython=True, nogil=True)
|
| 6 |
+
def maximum_path_jit(paths, values, t_ys, t_xs):
|
| 7 |
+
b = paths.shape[0]
|
| 8 |
+
max_neg_val = -1e9
|
| 9 |
+
for i in range(int(b)):
|
| 10 |
+
path = paths[i]
|
| 11 |
+
value = values[i]
|
| 12 |
+
t_y = t_ys[i]
|
| 13 |
+
t_x = t_xs[i]
|
| 14 |
+
|
| 15 |
+
v_prev = v_cur = 0.0
|
| 16 |
+
index = t_x - 1
|
| 17 |
+
|
| 18 |
+
for y in range(t_y):
|
| 19 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
| 20 |
+
if x == y:
|
| 21 |
+
v_cur = max_neg_val
|
| 22 |
+
else:
|
| 23 |
+
v_cur = value[y - 1, x]
|
| 24 |
+
if x == 0:
|
| 25 |
+
if y == 0:
|
| 26 |
+
v_prev = 0.
|
| 27 |
+
else:
|
| 28 |
+
v_prev = max_neg_val
|
| 29 |
+
else:
|
| 30 |
+
v_prev = value[y - 1, x - 1]
|
| 31 |
+
value[y, x] += max(v_prev, v_cur)
|
| 32 |
+
|
| 33 |
+
for y in range(t_y - 1, -1, -1):
|
| 34 |
+
path[y, index] = 1
|
| 35 |
+
if index != 0 and (index == y or value[y - 1, index] < value[y - 1, index - 1]):
|
| 36 |
+
index = index - 1
|
requirements.txt
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numba
|
| 2 |
+
librosa
|
| 3 |
+
matplotlib
|
| 4 |
+
scipy
|
| 5 |
+
numpy
|
| 6 |
+
tensorboard
|
| 7 |
+
torch
|
| 8 |
+
torchvision
|
| 9 |
+
torchaudio
|
| 10 |
+
unidecode
|
| 11 |
+
pyopenjtalk>=0.3.0
|
| 12 |
+
jamo
|
| 13 |
+
pypinyin
|
| 14 |
+
jieba
|
| 15 |
+
protobuf
|
| 16 |
+
cn2an
|
| 17 |
+
inflect
|
| 18 |
+
eng_to_ipa
|
| 19 |
+
ko_pron
|
| 20 |
+
indic_transliteration
|
| 21 |
+
num_thai
|
| 22 |
+
opencc
|
| 23 |
+
gradio
|
text/LICENSE
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Copyright (c) 2017 Keith Ito
|
| 2 |
+
|
| 3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 4 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 5 |
+
in the Software without restriction, including without limitation the rights
|
| 6 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 7 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 8 |
+
furnished to do so, subject to the following conditions:
|
| 9 |
+
|
| 10 |
+
The above copyright notice and this permission notice shall be included in
|
| 11 |
+
all copies or substantial portions of the Software.
|
| 12 |
+
|
| 13 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 14 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 15 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 16 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 17 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 18 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
| 19 |
+
THE SOFTWARE.
|
text/__init__.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" from https://github.com/keithito/tacotron """
|
| 2 |
+
from text import cleaners
|
| 3 |
+
from text.symbols import symbols
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# Mappings from symbol to numeric ID and vice versa:
|
| 7 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
| 8 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def text_to_sequence(text, symbols, cleaner_names):
|
| 12 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
| 13 |
+
Args:
|
| 14 |
+
text: string to convert to a sequence
|
| 15 |
+
cleaner_names: names of the cleaner functions to run the text through
|
| 16 |
+
Returns:
|
| 17 |
+
List of integers corresponding to the symbols in the text
|
| 18 |
+
'''
|
| 19 |
+
sequence = []
|
| 20 |
+
symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
| 21 |
+
clean_text = _clean_text(text, cleaner_names)
|
| 22 |
+
print(clean_text)
|
| 23 |
+
print(f" length:{len(clean_text)}")
|
| 24 |
+
for symbol in clean_text:
|
| 25 |
+
if symbol not in symbol_to_id.keys():
|
| 26 |
+
continue
|
| 27 |
+
symbol_id = symbol_to_id[symbol]
|
| 28 |
+
sequence += [symbol_id]
|
| 29 |
+
print(f" length:{len(sequence)}")
|
| 30 |
+
return sequence
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def cleaned_text_to_sequence(cleaned_text, symbols):
|
| 34 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
| 35 |
+
Args:
|
| 36 |
+
text: string to convert to a sequence
|
| 37 |
+
Returns:
|
| 38 |
+
List of integers corresponding to the symbols in the text
|
| 39 |
+
'''
|
| 40 |
+
symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
| 41 |
+
sequence = [symbol_to_id[symbol] for symbol in cleaned_text if symbol in symbol_to_id.keys()]
|
| 42 |
+
return sequence
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def sequence_to_text(sequence):
|
| 46 |
+
'''Converts a sequence of IDs back to a string'''
|
| 47 |
+
result = ''
|
| 48 |
+
for symbol_id in sequence:
|
| 49 |
+
s = _id_to_symbol[symbol_id]
|
| 50 |
+
result += s
|
| 51 |
+
return result
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def _clean_text(text, cleaner_names):
|
| 55 |
+
for name in cleaner_names:
|
| 56 |
+
cleaner = getattr(cleaners, name)
|
| 57 |
+
if not cleaner:
|
| 58 |
+
raise Exception('Unknown cleaner: %s' % name)
|
| 59 |
+
text = cleaner(text)
|
| 60 |
+
return text
|
text/__pycache__/__init__.cpython-37.pyc
ADDED
|
Binary file (2.34 kB). View file
|
|
|
text/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (2.56 kB). View file
|
|
|
text/__pycache__/cleaners.cpython-37.pyc
ADDED
|
Binary file (5.45 kB). View file
|
|
|
text/__pycache__/cleaners.cpython-38.pyc
ADDED
|
Binary file (5.37 kB). View file
|
|
|
text/__pycache__/english.cpython-37.pyc
ADDED
|
Binary file (4.93 kB). View file
|
|
|
text/__pycache__/english.cpython-38.pyc
ADDED
|
Binary file (4.86 kB). View file
|
|
|
text/__pycache__/japanese.cpython-37.pyc
ADDED
|
Binary file (4.6 kB). View file
|
|
|
text/__pycache__/japanese.cpython-38.pyc
ADDED
|
Binary file (4.45 kB). View file
|
|
|
text/__pycache__/korean.cpython-37.pyc
ADDED
|
Binary file (5.75 kB). View file
|
|
|
text/__pycache__/korean.cpython-38.pyc
ADDED
|
Binary file (5.71 kB). View file
|
|
|
text/__pycache__/mandarin.cpython-37.pyc
ADDED
|
Binary file (7.51 kB). View file
|
|
|
text/__pycache__/mandarin.cpython-38.pyc
ADDED
|
Binary file (6.37 kB). View file
|
|
|
text/__pycache__/sanskrit.cpython-37.pyc
ADDED
|
Binary file (1.63 kB). View file
|
|
|
text/__pycache__/sanskrit.cpython-38.pyc
ADDED
|
Binary file (1.68 kB). View file
|
|
|
text/__pycache__/symbols.cpython-37.pyc
ADDED
|
Binary file (417 Bytes). View file
|
|
|
text/__pycache__/symbols.cpython-38.pyc
ADDED
|
Binary file (443 Bytes). View file
|
|
|
text/__pycache__/thai.cpython-37.pyc
ADDED
|
Binary file (1.41 kB). View file
|
|
|
text/__pycache__/thai.cpython-38.pyc
ADDED
|
Binary file (1.44 kB). View file
|
|
|
text/cantonese.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import cn2an
|
| 3 |
+
import opencc
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
converter = opencc.OpenCC('jyutjyu')
|
| 7 |
+
|
| 8 |
+
# List of (Latin alphabet, ipa) pairs:
|
| 9 |
+
_latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 10 |
+
('A', 'ei˥'),
|
| 11 |
+
('B', 'biː˥'),
|
| 12 |
+
('C', 'siː˥'),
|
| 13 |
+
('D', 'tiː˥'),
|
| 14 |
+
('E', 'iː˥'),
|
| 15 |
+
('F', 'e˥fuː˨˩'),
|
| 16 |
+
('G', 'tsiː˥'),
|
| 17 |
+
('H', 'ɪk̚˥tsʰyː˨˩'),
|
| 18 |
+
('I', 'ɐi˥'),
|
| 19 |
+
('J', 'tsei˥'),
|
| 20 |
+
('K', 'kʰei˥'),
|
| 21 |
+
('L', 'e˥llou˨˩'),
|
| 22 |
+
('M', 'ɛːm˥'),
|
| 23 |
+
('N', 'ɛːn˥'),
|
| 24 |
+
('O', 'ou˥'),
|
| 25 |
+
('P', 'pʰiː˥'),
|
| 26 |
+
('Q', 'kʰiːu˥'),
|
| 27 |
+
('R', 'aː˥lou˨˩'),
|
| 28 |
+
('S', 'ɛː˥siː˨˩'),
|
| 29 |
+
('T', 'tʰiː˥'),
|
| 30 |
+
('U', 'juː˥'),
|
| 31 |
+
('V', 'wiː˥'),
|
| 32 |
+
('W', 'tʊk̚˥piː˥juː˥'),
|
| 33 |
+
('X', 'ɪk̚˥siː˨˩'),
|
| 34 |
+
('Y', 'waːi˥'),
|
| 35 |
+
('Z', 'iː˨sɛːt̚˥')
|
| 36 |
+
]]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def number_to_cantonese(text):
|
| 40 |
+
return re.sub(r'\d+(?:\.?\d+)?', lambda x: cn2an.an2cn(x.group()), text)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def latin_to_ipa(text):
|
| 44 |
+
for regex, replacement in _latin_to_ipa:
|
| 45 |
+
text = re.sub(regex, replacement, text)
|
| 46 |
+
return text
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def cantonese_to_ipa(text):
|
| 50 |
+
text = number_to_cantonese(text.upper())
|
| 51 |
+
text = converter.convert(text).replace('-','').replace('$',' ')
|
| 52 |
+
text = re.sub(r'[A-Z]', lambda x: latin_to_ipa(x.group())+' ', text)
|
| 53 |
+
text = re.sub(r'[、;:]', ',', text)
|
| 54 |
+
text = re.sub(r'\s*,\s*', ', ', text)
|
| 55 |
+
text = re.sub(r'\s*。\s*', '. ', text)
|
| 56 |
+
text = re.sub(r'\s*?\s*', '? ', text)
|
| 57 |
+
text = re.sub(r'\s*!\s*', '! ', text)
|
| 58 |
+
text = re.sub(r'\s*$', '', text)
|
| 59 |
+
return text
|
text/cleaners.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from text.japanese import japanese_to_romaji_with_accent, japanese_to_ipa, japanese_to_ipa2, japanese_to_ipa3
|
| 3 |
+
from text.korean import latin_to_hangul, number_to_hangul, divide_hangul, korean_to_lazy_ipa, korean_to_ipa
|
| 4 |
+
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo, chinese_to_romaji, chinese_to_lazy_ipa, chinese_to_ipa, chinese_to_ipa2
|
| 5 |
+
from text.sanskrit import devanagari_to_ipa
|
| 6 |
+
from text.english import english_to_lazy_ipa, english_to_ipa2, english_to_lazy_ipa2
|
| 7 |
+
from text.thai import num_to_thai, latin_to_thai
|
| 8 |
+
# from text.shanghainese import shanghainese_to_ipa
|
| 9 |
+
# from text.cantonese import cantonese_to_ipa
|
| 10 |
+
# from text.ngu_dialect import ngu_dialect_to_ipa
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def japanese_cleaners(text):
|
| 14 |
+
text = japanese_to_romaji_with_accent(text)
|
| 15 |
+
text = re.sub(r'([A-Za-z])$', r'\1.', text)
|
| 16 |
+
return text
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def japanese_cleaners2(text):
|
| 20 |
+
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def korean_cleaners(text):
|
| 24 |
+
'''Pipeline for Korean text'''
|
| 25 |
+
text = latin_to_hangul(text)
|
| 26 |
+
text = number_to_hangul(text)
|
| 27 |
+
text = divide_hangul(text)
|
| 28 |
+
text = re.sub(r'([\u3131-\u3163])$', r'\1.', text)
|
| 29 |
+
return text
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def chinese_cleaners(text):
|
| 33 |
+
'''Pipeline for Chinese text'''
|
| 34 |
+
text = text.replace("[ZH]", "")
|
| 35 |
+
text = number_to_chinese(text)
|
| 36 |
+
text = chinese_to_bopomofo(text)
|
| 37 |
+
text = latin_to_bopomofo(text)
|
| 38 |
+
text = re.sub(r'([ˉˊˇˋ˙])$', r'\1。', text)
|
| 39 |
+
return text
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def zh_ja_mixture_cleaners(text):
|
| 43 |
+
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
| 44 |
+
lambda x: chinese_to_romaji(x.group(1))+' ', text)
|
| 45 |
+
text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_romaji_with_accent(
|
| 46 |
+
x.group(1)).replace('ts', 'ʦ').replace('u', 'ɯ').replace('...', '…')+' ', text)
|
| 47 |
+
text = re.sub(r'\s+$', '', text)
|
| 48 |
+
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
| 49 |
+
return text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def sanskrit_cleaners(text):
|
| 53 |
+
text = text.replace('॥', '।').replace('ॐ', 'ओम्')
|
| 54 |
+
text = re.sub(r'([^।])$', r'\1।', text)
|
| 55 |
+
return text
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def cjks_cleaners(text):
|
| 59 |
+
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
| 60 |
+
lambda x: chinese_to_lazy_ipa(x.group(1))+' ', text)
|
| 61 |
+
text = re.sub(r'\[JA\](.*?)\[JA\]',
|
| 62 |
+
lambda x: japanese_to_ipa(x.group(1))+' ', text)
|
| 63 |
+
text = re.sub(r'\[KO\](.*?)\[KO\]',
|
| 64 |
+
lambda x: korean_to_lazy_ipa(x.group(1))+' ', text)
|
| 65 |
+
text = re.sub(r'\[SA\](.*?)\[SA\]',
|
| 66 |
+
lambda x: devanagari_to_ipa(x.group(1))+' ', text)
|
| 67 |
+
text = re.sub(r'\[EN\](.*?)\[EN\]',
|
| 68 |
+
lambda x: english_to_lazy_ipa(x.group(1))+' ', text)
|
| 69 |
+
text = re.sub(r'\s+$', '', text)
|
| 70 |
+
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
| 71 |
+
return text
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def cjke_cleaners(text):
|
| 75 |
+
text = re.sub(r'\[ZH\](.*?)\[ZH\]', lambda x: chinese_to_lazy_ipa(x.group(1)).replace(
|
| 76 |
+
'ʧ', 'tʃ').replace('ʦ', 'ts').replace('ɥan', 'ɥæn')+' ', text)
|
| 77 |
+
text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_ipa(x.group(1)).replace('ʧ', 'tʃ').replace(
|
| 78 |
+
'ʦ', 'ts').replace('ɥan', 'ɥæn').replace('ʥ', 'dz')+' ', text)
|
| 79 |
+
text = re.sub(r'\[KO\](.*?)\[KO\]',
|
| 80 |
+
lambda x: korean_to_ipa(x.group(1))+' ', text)
|
| 81 |
+
text = re.sub(r'\[EN\](.*?)\[EN\]', lambda x: english_to_ipa2(x.group(1)).replace('ɑ', 'a').replace(
|
| 82 |
+
'ɔ', 'o').replace('ɛ', 'e').replace('ɪ', 'i').replace('ʊ', 'u')+' ', text)
|
| 83 |
+
text = re.sub(r'\s+$', '', text)
|
| 84 |
+
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
| 85 |
+
return text
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def cjke_cleaners2(text):
|
| 89 |
+
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
| 90 |
+
lambda x: chinese_to_ipa(x.group(1))+' ', text)
|
| 91 |
+
text = re.sub(r'\[JA\](.*?)\[JA\]',
|
| 92 |
+
lambda x: japanese_to_ipa2(x.group(1))+' ', text)
|
| 93 |
+
text = re.sub(r'\[KO\](.*?)\[KO\]',
|
| 94 |
+
lambda x: korean_to_ipa(x.group(1))+' ', text)
|
| 95 |
+
text = re.sub(r'\[EN\](.*?)\[EN\]',
|
| 96 |
+
lambda x: english_to_ipa2(x.group(1))+' ', text)
|
| 97 |
+
text = re.sub(r'\s+$', '', text)
|
| 98 |
+
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
| 99 |
+
return text
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def thai_cleaners(text):
|
| 103 |
+
text = num_to_thai(text)
|
| 104 |
+
text = latin_to_thai(text)
|
| 105 |
+
return text
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# def shanghainese_cleaners(text):
|
| 109 |
+
# text = shanghainese_to_ipa(text)
|
| 110 |
+
# text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
| 111 |
+
# return text
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# def chinese_dialect_cleaners(text):
|
| 115 |
+
# text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
| 116 |
+
# lambda x: chinese_to_ipa2(x.group(1))+' ', text)
|
| 117 |
+
# text = re.sub(r'\[JA\](.*?)\[JA\]',
|
| 118 |
+
# lambda x: japanese_to_ipa3(x.group(1)).replace('Q', 'ʔ')+' ', text)
|
| 119 |
+
# text = re.sub(r'\[SH\](.*?)\[SH\]', lambda x: shanghainese_to_ipa(x.group(1)).replace('1', '˥˧').replace('5',
|
| 120 |
+
# '˧˧˦').replace('6', '˩˩˧').replace('7', '˥').replace('8', '˩˨').replace('ᴀ', 'ɐ').replace('ᴇ', 'e')+' ', text)
|
| 121 |
+
# text = re.sub(r'\[GD\](.*?)\[GD\]',
|
| 122 |
+
# lambda x: cantonese_to_ipa(x.group(1))+' ', text)
|
| 123 |
+
# text = re.sub(r'\[EN\](.*?)\[EN\]',
|
| 124 |
+
# lambda x: english_to_lazy_ipa2(x.group(1))+' ', text)
|
| 125 |
+
# text = re.sub(r'\[([A-Z]{2})\](.*?)\[\1\]', lambda x: ngu_dialect_to_ipa(x.group(2), x.group(
|
| 126 |
+
# 1)).replace('ʣ', 'dz').replace('ʥ', 'dʑ').replace('ʦ', 'ts').replace('ʨ', 'tɕ')+' ', text)
|
| 127 |
+
# text = re.sub(r'\s+$', '', text)
|
| 128 |
+
# text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
| 129 |
+
# return text
|
text/english.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" from https://github.com/keithito/tacotron """
|
| 2 |
+
|
| 3 |
+
'''
|
| 4 |
+
Cleaners are transformations that run over the input text at both training and eval time.
|
| 5 |
+
|
| 6 |
+
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
| 7 |
+
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
| 8 |
+
1. "english_cleaners" for English text
|
| 9 |
+
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
| 10 |
+
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
| 11 |
+
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
| 12 |
+
the symbols in symbols.py to match your data).
|
| 13 |
+
'''
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Regular expression matching whitespace:
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
import re
|
| 20 |
+
import inflect
|
| 21 |
+
from unidecode import unidecode
|
| 22 |
+
import eng_to_ipa as ipa
|
| 23 |
+
_inflect = inflect.engine()
|
| 24 |
+
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
|
| 25 |
+
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
|
| 26 |
+
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
|
| 27 |
+
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
|
| 28 |
+
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
|
| 29 |
+
_number_re = re.compile(r'[0-9]+')
|
| 30 |
+
|
| 31 |
+
# List of (regular expression, replacement) pairs for abbreviations:
|
| 32 |
+
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
|
| 33 |
+
('mrs', 'misess'),
|
| 34 |
+
('mr', 'mister'),
|
| 35 |
+
('dr', 'doctor'),
|
| 36 |
+
('st', 'saint'),
|
| 37 |
+
('co', 'company'),
|
| 38 |
+
('jr', 'junior'),
|
| 39 |
+
('maj', 'major'),
|
| 40 |
+
('gen', 'general'),
|
| 41 |
+
('drs', 'doctors'),
|
| 42 |
+
('rev', 'reverend'),
|
| 43 |
+
('lt', 'lieutenant'),
|
| 44 |
+
('hon', 'honorable'),
|
| 45 |
+
('sgt', 'sergeant'),
|
| 46 |
+
('capt', 'captain'),
|
| 47 |
+
('esq', 'esquire'),
|
| 48 |
+
('ltd', 'limited'),
|
| 49 |
+
('col', 'colonel'),
|
| 50 |
+
('ft', 'fort'),
|
| 51 |
+
]]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# List of (ipa, lazy ipa) pairs:
|
| 55 |
+
_lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 56 |
+
('r', 'ɹ'),
|
| 57 |
+
('æ', 'e'),
|
| 58 |
+
('ɑ', 'a'),
|
| 59 |
+
('ɔ', 'o'),
|
| 60 |
+
('ð', 'z'),
|
| 61 |
+
('θ', 's'),
|
| 62 |
+
('ɛ', 'e'),
|
| 63 |
+
('ɪ', 'i'),
|
| 64 |
+
('ʊ', 'u'),
|
| 65 |
+
('ʒ', 'ʥ'),
|
| 66 |
+
('ʤ', 'ʥ'),
|
| 67 |
+
('ˈ', '↓'),
|
| 68 |
+
]]
|
| 69 |
+
|
| 70 |
+
# List of (ipa, lazy ipa2) pairs:
|
| 71 |
+
_lazy_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 72 |
+
('r', 'ɹ'),
|
| 73 |
+
('ð', 'z'),
|
| 74 |
+
('θ', 's'),
|
| 75 |
+
('ʒ', 'ʑ'),
|
| 76 |
+
('ʤ', 'dʑ'),
|
| 77 |
+
('ˈ', '↓'),
|
| 78 |
+
]]
|
| 79 |
+
|
| 80 |
+
# List of (ipa, ipa2) pairs
|
| 81 |
+
_ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 82 |
+
('r', 'ɹ'),
|
| 83 |
+
('ʤ', 'dʒ'),
|
| 84 |
+
('ʧ', 'tʃ')
|
| 85 |
+
]]
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def expand_abbreviations(text):
|
| 89 |
+
for regex, replacement in _abbreviations:
|
| 90 |
+
text = re.sub(regex, replacement, text)
|
| 91 |
+
return text
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def collapse_whitespace(text):
|
| 95 |
+
return re.sub(r'\s+', ' ', text)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def _remove_commas(m):
|
| 99 |
+
return m.group(1).replace(',', '')
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def _expand_decimal_point(m):
|
| 103 |
+
return m.group(1).replace('.', ' point ')
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def _expand_dollars(m):
|
| 107 |
+
match = m.group(1)
|
| 108 |
+
parts = match.split('.')
|
| 109 |
+
if len(parts) > 2:
|
| 110 |
+
return match + ' dollars' # Unexpected format
|
| 111 |
+
dollars = int(parts[0]) if parts[0] else 0
|
| 112 |
+
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
| 113 |
+
if dollars and cents:
|
| 114 |
+
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
| 115 |
+
cent_unit = 'cent' if cents == 1 else 'cents'
|
| 116 |
+
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
|
| 117 |
+
elif dollars:
|
| 118 |
+
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
| 119 |
+
return '%s %s' % (dollars, dollar_unit)
|
| 120 |
+
elif cents:
|
| 121 |
+
cent_unit = 'cent' if cents == 1 else 'cents'
|
| 122 |
+
return '%s %s' % (cents, cent_unit)
|
| 123 |
+
else:
|
| 124 |
+
return 'zero dollars'
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def _expand_ordinal(m):
|
| 128 |
+
return _inflect.number_to_words(m.group(0))
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def _expand_number(m):
|
| 132 |
+
num = int(m.group(0))
|
| 133 |
+
if num > 1000 and num < 3000:
|
| 134 |
+
if num == 2000:
|
| 135 |
+
return 'two thousand'
|
| 136 |
+
elif num > 2000 and num < 2010:
|
| 137 |
+
return 'two thousand ' + _inflect.number_to_words(num % 100)
|
| 138 |
+
elif num % 100 == 0:
|
| 139 |
+
return _inflect.number_to_words(num // 100) + ' hundred'
|
| 140 |
+
else:
|
| 141 |
+
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
|
| 142 |
+
else:
|
| 143 |
+
return _inflect.number_to_words(num, andword='')
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def normalize_numbers(text):
|
| 147 |
+
text = re.sub(_comma_number_re, _remove_commas, text)
|
| 148 |
+
text = re.sub(_pounds_re, r'\1 pounds', text)
|
| 149 |
+
text = re.sub(_dollars_re, _expand_dollars, text)
|
| 150 |
+
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
| 151 |
+
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
| 152 |
+
text = re.sub(_number_re, _expand_number, text)
|
| 153 |
+
return text
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def mark_dark_l(text):
|
| 157 |
+
return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ'+x.group(1), text)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def english_to_ipa(text):
|
| 161 |
+
text = unidecode(text).lower()
|
| 162 |
+
text = expand_abbreviations(text)
|
| 163 |
+
text = normalize_numbers(text)
|
| 164 |
+
phonemes = ipa.convert(text)
|
| 165 |
+
phonemes = collapse_whitespace(phonemes)
|
| 166 |
+
return phonemes
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def english_to_lazy_ipa(text):
|
| 170 |
+
text = english_to_ipa(text)
|
| 171 |
+
for regex, replacement in _lazy_ipa:
|
| 172 |
+
text = re.sub(regex, replacement, text)
|
| 173 |
+
return text
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def english_to_ipa2(text):
|
| 177 |
+
text = english_to_ipa(text)
|
| 178 |
+
text = mark_dark_l(text)
|
| 179 |
+
for regex, replacement in _ipa_to_ipa2:
|
| 180 |
+
text = re.sub(regex, replacement, text)
|
| 181 |
+
return text.replace('...', '…')
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def english_to_lazy_ipa2(text):
|
| 185 |
+
text = english_to_ipa(text)
|
| 186 |
+
for regex, replacement in _lazy_ipa2:
|
| 187 |
+
text = re.sub(regex, replacement, text)
|
| 188 |
+
return text
|
text/japanese.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from unidecode import unidecode
|
| 3 |
+
import pyopenjtalk
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# Regular expression matching Japanese without punctuation marks:
|
| 7 |
+
_japanese_characters = re.compile(
|
| 8 |
+
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
| 9 |
+
|
| 10 |
+
# Regular expression matching non-Japanese characters or punctuation marks:
|
| 11 |
+
_japanese_marks = re.compile(
|
| 12 |
+
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
| 13 |
+
|
| 14 |
+
# List of (symbol, Japanese) pairs for marks:
|
| 15 |
+
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 16 |
+
('%', 'パーセント')
|
| 17 |
+
]]
|
| 18 |
+
|
| 19 |
+
# List of (romaji, ipa) pairs for marks:
|
| 20 |
+
_romaji_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 21 |
+
('ts', 'ʦ'),
|
| 22 |
+
('u', 'ɯ'),
|
| 23 |
+
('j', 'ʥ'),
|
| 24 |
+
('y', 'j'),
|
| 25 |
+
('ni', 'n^i'),
|
| 26 |
+
('nj', 'n^'),
|
| 27 |
+
('hi', 'çi'),
|
| 28 |
+
('hj', 'ç'),
|
| 29 |
+
('f', 'ɸ'),
|
| 30 |
+
('I', 'i*'),
|
| 31 |
+
('U', 'ɯ*'),
|
| 32 |
+
('r', 'ɾ')
|
| 33 |
+
]]
|
| 34 |
+
|
| 35 |
+
# List of (romaji, ipa2) pairs for marks:
|
| 36 |
+
_romaji_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 37 |
+
('u', 'ɯ'),
|
| 38 |
+
('ʧ', 'tʃ'),
|
| 39 |
+
('j', 'dʑ'),
|
| 40 |
+
('y', 'j'),
|
| 41 |
+
('ni', 'n^i'),
|
| 42 |
+
('nj', 'n^'),
|
| 43 |
+
('hi', 'çi'),
|
| 44 |
+
('hj', 'ç'),
|
| 45 |
+
('f', 'ɸ'),
|
| 46 |
+
('I', 'i*'),
|
| 47 |
+
('U', 'ɯ*'),
|
| 48 |
+
('r', 'ɾ')
|
| 49 |
+
]]
|
| 50 |
+
|
| 51 |
+
# List of (consonant, sokuon) pairs:
|
| 52 |
+
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 53 |
+
(r'Q([↑↓]*[kg])', r'k#\1'),
|
| 54 |
+
(r'Q([↑↓]*[tdjʧ])', r't#\1'),
|
| 55 |
+
(r'Q([↑↓]*[sʃ])', r's\1'),
|
| 56 |
+
(r'Q([↑↓]*[pb])', r'p#\1')
|
| 57 |
+
]]
|
| 58 |
+
|
| 59 |
+
# List of (consonant, hatsuon) pairs:
|
| 60 |
+
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 61 |
+
(r'N([↑↓]*[pbm])', r'm\1'),
|
| 62 |
+
(r'N([↑↓]*[ʧʥj])', r'n^\1'),
|
| 63 |
+
(r'N([↑↓]*[tdn])', r'n\1'),
|
| 64 |
+
(r'N([↑↓]*[kg])', r'ŋ\1')
|
| 65 |
+
]]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def symbols_to_japanese(text):
|
| 69 |
+
for regex, replacement in _symbols_to_japanese:
|
| 70 |
+
text = re.sub(regex, replacement, text)
|
| 71 |
+
return text
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def japanese_to_romaji_with_accent(text):
|
| 75 |
+
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
| 76 |
+
text = symbols_to_japanese(text)
|
| 77 |
+
sentences = re.split(_japanese_marks, text)
|
| 78 |
+
marks = re.findall(_japanese_marks, text)
|
| 79 |
+
text = ''
|
| 80 |
+
for i, sentence in enumerate(sentences):
|
| 81 |
+
if re.match(_japanese_characters, sentence):
|
| 82 |
+
if text != '':
|
| 83 |
+
text += ' '
|
| 84 |
+
labels = pyopenjtalk.extract_fullcontext(sentence)
|
| 85 |
+
for n, label in enumerate(labels):
|
| 86 |
+
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
|
| 87 |
+
if phoneme not in ['sil', 'pau']:
|
| 88 |
+
text += phoneme.replace('ch', 'ʧ').replace('sh',
|
| 89 |
+
'ʃ').replace('cl', 'Q')
|
| 90 |
+
else:
|
| 91 |
+
continue
|
| 92 |
+
# n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
|
| 93 |
+
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
|
| 94 |
+
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
|
| 95 |
+
a3 = int(re.search(r"\+(\d+)/", label).group(1))
|
| 96 |
+
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
|
| 97 |
+
a2_next = -1
|
| 98 |
+
else:
|
| 99 |
+
a2_next = int(
|
| 100 |
+
re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
|
| 101 |
+
# Accent phrase boundary
|
| 102 |
+
if a3 == 1 and a2_next == 1:
|
| 103 |
+
text += ' '
|
| 104 |
+
# Falling
|
| 105 |
+
elif a1 == 0 and a2_next == a2 + 1:
|
| 106 |
+
text += '↓'
|
| 107 |
+
# Rising
|
| 108 |
+
elif a2 == 1 and a2_next == 2:
|
| 109 |
+
text += '↑'
|
| 110 |
+
if i < len(marks):
|
| 111 |
+
text += unidecode(marks[i]).replace(' ', '')
|
| 112 |
+
return text
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def get_real_sokuon(text):
|
| 116 |
+
for regex, replacement in _real_sokuon:
|
| 117 |
+
text = re.sub(regex, replacement, text)
|
| 118 |
+
return text
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def get_real_hatsuon(text):
|
| 122 |
+
for regex, replacement in _real_hatsuon:
|
| 123 |
+
text = re.sub(regex, replacement, text)
|
| 124 |
+
return text
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def japanese_to_ipa(text):
|
| 128 |
+
text = japanese_to_romaji_with_accent(text).replace('...', '…')
|
| 129 |
+
text = re.sub(
|
| 130 |
+
r'([aiueo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
|
| 131 |
+
text = get_real_sokuon(text)
|
| 132 |
+
text = get_real_hatsuon(text)
|
| 133 |
+
for regex, replacement in _romaji_to_ipa:
|
| 134 |
+
text = re.sub(regex, replacement, text)
|
| 135 |
+
return text
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def japanese_to_ipa2(text):
|
| 139 |
+
text = japanese_to_romaji_with_accent(text).replace('...', '…')
|
| 140 |
+
text = get_real_sokuon(text)
|
| 141 |
+
text = get_real_hatsuon(text)
|
| 142 |
+
for regex, replacement in _romaji_to_ipa2:
|
| 143 |
+
text = re.sub(regex, replacement, text)
|
| 144 |
+
return text
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def japanese_to_ipa3(text):
|
| 148 |
+
text = japanese_to_ipa2(text).replace('n^', 'ȵ').replace(
|
| 149 |
+
'ʃ', 'ɕ').replace('*', '\u0325').replace('#', '\u031a')
|
| 150 |
+
text = re.sub(
|
| 151 |
+
r'([aiɯeo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
|
| 152 |
+
text = re.sub(r'((?:^|\s)(?:ts|tɕ|[kpt]))', r'\1ʰ', text)
|
| 153 |
+
return text
|
text/korean.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from jamo import h2j, j2hcj
|
| 3 |
+
import ko_pron
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# This is a list of Korean classifiers preceded by pure Korean numerals.
|
| 7 |
+
_korean_classifiers = '군데 권 개 그루 닢 대 두 마리 모 모금 뭇 발 발짝 방 번 벌 보루 살 수 술 시 쌈 움큼 정 짝 채 척 첩 축 켤레 톨 통'
|
| 8 |
+
|
| 9 |
+
# List of (hangul, hangul divided) pairs:
|
| 10 |
+
_hangul_divided = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 11 |
+
('ㄳ', 'ㄱㅅ'),
|
| 12 |
+
('ㄵ', 'ㄴㅈ'),
|
| 13 |
+
('ㄶ', 'ㄴㅎ'),
|
| 14 |
+
('ㄺ', 'ㄹㄱ'),
|
| 15 |
+
('ㄻ', 'ㄹㅁ'),
|
| 16 |
+
('ㄼ', 'ㄹㅂ'),
|
| 17 |
+
('ㄽ', 'ㄹㅅ'),
|
| 18 |
+
('ㄾ', 'ㄹㅌ'),
|
| 19 |
+
('ㄿ', 'ㄹㅍ'),
|
| 20 |
+
('ㅀ', 'ㄹㅎ'),
|
| 21 |
+
('ㅄ', 'ㅂㅅ'),
|
| 22 |
+
('ㅘ', 'ㅗㅏ'),
|
| 23 |
+
('ㅙ', 'ㅗㅐ'),
|
| 24 |
+
('ㅚ', 'ㅗㅣ'),
|
| 25 |
+
('ㅝ', 'ㅜㅓ'),
|
| 26 |
+
('ㅞ', 'ㅜㅔ'),
|
| 27 |
+
('ㅟ', 'ㅜㅣ'),
|
| 28 |
+
('ㅢ', 'ㅡㅣ'),
|
| 29 |
+
('ㅑ', 'ㅣㅏ'),
|
| 30 |
+
('ㅒ', 'ㅣㅐ'),
|
| 31 |
+
('ㅕ', 'ㅣㅓ'),
|
| 32 |
+
('ㅖ', 'ㅣㅔ'),
|
| 33 |
+
('ㅛ', 'ㅣㅗ'),
|
| 34 |
+
('ㅠ', 'ㅣㅜ')
|
| 35 |
+
]]
|
| 36 |
+
|
| 37 |
+
# List of (Latin alphabet, hangul) pairs:
|
| 38 |
+
_latin_to_hangul = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
| 39 |
+
('a', '에이'),
|
| 40 |
+
('b', '비'),
|
| 41 |
+
('c', '시'),
|
| 42 |
+
('d', '디'),
|
| 43 |
+
('e', '이'),
|
| 44 |
+
('f', '에프'),
|
| 45 |
+
('g', '지'),
|
| 46 |
+
('h', '에이치'),
|
| 47 |
+
('i', '아이'),
|
| 48 |
+
('j', '제이'),
|
| 49 |
+
('k', '케이'),
|
| 50 |
+
('l', '엘'),
|
| 51 |
+
('m', '엠'),
|
| 52 |
+
('n', '엔'),
|
| 53 |
+
('o', '오'),
|
| 54 |
+
('p', '피'),
|
| 55 |
+
('q', '큐'),
|
| 56 |
+
('r', '아르'),
|
| 57 |
+
('s', '에스'),
|
| 58 |
+
('t', '티'),
|
| 59 |
+
('u', '유'),
|
| 60 |
+
('v', '브이'),
|
| 61 |
+
('w', '더블유'),
|
| 62 |
+
('x', '엑스'),
|
| 63 |
+
('y', '와이'),
|
| 64 |
+
('z', '제트')
|
| 65 |
+
]]
|
| 66 |
+
|
| 67 |
+
# List of (ipa, lazy ipa) pairs:
|
| 68 |
+
_ipa_to_lazy_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
| 69 |
+
('t͡ɕ','ʧ'),
|
| 70 |
+
('d͡ʑ','ʥ'),
|
| 71 |
+
('ɲ','n^'),
|
| 72 |
+
('ɕ','ʃ'),
|
| 73 |
+
('ʷ','w'),
|
| 74 |
+
('ɭ','l`'),
|
| 75 |
+
('ʎ','ɾ'),
|
| 76 |
+
('ɣ','ŋ'),
|
| 77 |
+
('ɰ','ɯ'),
|
| 78 |
+
('ʝ','j'),
|
| 79 |
+
('ʌ','ə'),
|
| 80 |
+
('ɡ','g'),
|
| 81 |
+
('\u031a','#'),
|
| 82 |
+
('\u0348','='),
|
| 83 |
+
('\u031e',''),
|
| 84 |
+
('\u0320',''),
|
| 85 |
+
('\u0339','')
|
| 86 |
+
]]
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def latin_to_hangul(text):
|
| 90 |
+
for regex, replacement in _latin_to_hangul:
|
| 91 |
+
text = re.sub(regex, replacement, text)
|
| 92 |
+
return text
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def divide_hangul(text):
|
| 96 |
+
text = j2hcj(h2j(text))
|
| 97 |
+
for regex, replacement in _hangul_divided:
|
| 98 |
+
text = re.sub(regex, replacement, text)
|
| 99 |
+
return text
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def hangul_number(num, sino=True):
|
| 103 |
+
'''Reference https://github.com/Kyubyong/g2pK'''
|
| 104 |
+
num = re.sub(',', '', num)
|
| 105 |
+
|
| 106 |
+
if num == '0':
|
| 107 |
+
return '영'
|
| 108 |
+
if not sino and num == '20':
|
| 109 |
+
return '스무'
|
| 110 |
+
|
| 111 |
+
digits = '123456789'
|
| 112 |
+
names = '일이삼사오육칠팔구'
|
| 113 |
+
digit2name = {d: n for d, n in zip(digits, names)}
|
| 114 |
+
|
| 115 |
+
modifiers = '한 두 세 네 다섯 여섯 일곱 여덟 아홉'
|
| 116 |
+
decimals = '열 스물 서른 마흔 쉰 예순 일흔 여든 아흔'
|
| 117 |
+
digit2mod = {d: mod for d, mod in zip(digits, modifiers.split())}
|
| 118 |
+
digit2dec = {d: dec for d, dec in zip(digits, decimals.split())}
|
| 119 |
+
|
| 120 |
+
spelledout = []
|
| 121 |
+
for i, digit in enumerate(num):
|
| 122 |
+
i = len(num) - i - 1
|
| 123 |
+
if sino:
|
| 124 |
+
if i == 0:
|
| 125 |
+
name = digit2name.get(digit, '')
|
| 126 |
+
elif i == 1:
|
| 127 |
+
name = digit2name.get(digit, '') + '십'
|
| 128 |
+
name = name.replace('일십', '십')
|
| 129 |
+
else:
|
| 130 |
+
if i == 0:
|
| 131 |
+
name = digit2mod.get(digit, '')
|
| 132 |
+
elif i == 1:
|
| 133 |
+
name = digit2dec.get(digit, '')
|
| 134 |
+
if digit == '0':
|
| 135 |
+
if i % 4 == 0:
|
| 136 |
+
last_three = spelledout[-min(3, len(spelledout)):]
|
| 137 |
+
if ''.join(last_three) == '':
|
| 138 |
+
spelledout.append('')
|
| 139 |
+
continue
|
| 140 |
+
else:
|
| 141 |
+
spelledout.append('')
|
| 142 |
+
continue
|
| 143 |
+
if i == 2:
|
| 144 |
+
name = digit2name.get(digit, '') + '백'
|
| 145 |
+
name = name.replace('일백', '백')
|
| 146 |
+
elif i == 3:
|
| 147 |
+
name = digit2name.get(digit, '') + '천'
|
| 148 |
+
name = name.replace('일천', '천')
|
| 149 |
+
elif i == 4:
|
| 150 |
+
name = digit2name.get(digit, '') + '만'
|
| 151 |
+
name = name.replace('일만', '만')
|
| 152 |
+
elif i == 5:
|
| 153 |
+
name = digit2name.get(digit, '') + '십'
|
| 154 |
+
name = name.replace('일십', '십')
|
| 155 |
+
elif i == 6:
|
| 156 |
+
name = digit2name.get(digit, '') + '백'
|
| 157 |
+
name = name.replace('일백', '백')
|
| 158 |
+
elif i == 7:
|
| 159 |
+
name = digit2name.get(digit, '') + '천'
|
| 160 |
+
name = name.replace('일천', '천')
|
| 161 |
+
elif i == 8:
|
| 162 |
+
name = digit2name.get(digit, '') + '억'
|
| 163 |
+
elif i == 9:
|
| 164 |
+
name = digit2name.get(digit, '') + '십'
|
| 165 |
+
elif i == 10:
|
| 166 |
+
name = digit2name.get(digit, '') + '백'
|
| 167 |
+
elif i == 11:
|
| 168 |
+
name = digit2name.get(digit, '') + '천'
|
| 169 |
+
elif i == 12:
|
| 170 |
+
name = digit2name.get(digit, '') + '조'
|
| 171 |
+
elif i == 13:
|
| 172 |
+
name = digit2name.get(digit, '') + '십'
|
| 173 |
+
elif i == 14:
|
| 174 |
+
name = digit2name.get(digit, '') + '백'
|
| 175 |
+
elif i == 15:
|
| 176 |
+
name = digit2name.get(digit, '') + '천'
|
| 177 |
+
spelledout.append(name)
|
| 178 |
+
return ''.join(elem for elem in spelledout)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def number_to_hangul(text):
|
| 182 |
+
'''Reference https://github.com/Kyubyong/g2pK'''
|
| 183 |
+
tokens = set(re.findall(r'(\d[\d,]*)([\uac00-\ud71f]+)', text))
|
| 184 |
+
for token in tokens:
|
| 185 |
+
num, classifier = token
|
| 186 |
+
if classifier[:2] in _korean_classifiers or classifier[0] in _korean_classifiers:
|
| 187 |
+
spelledout = hangul_number(num, sino=False)
|
| 188 |
+
else:
|
| 189 |
+
spelledout = hangul_number(num, sino=True)
|
| 190 |
+
text = text.replace(f'{num}{classifier}', f'{spelledout}{classifier}')
|
| 191 |
+
# digit by digit for remaining digits
|
| 192 |
+
digits = '0123456789'
|
| 193 |
+
names = '영일이삼사오육칠팔구'
|
| 194 |
+
for d, n in zip(digits, names):
|
| 195 |
+
text = text.replace(d, n)
|
| 196 |
+
return text
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def korean_to_lazy_ipa(text):
|
| 200 |
+
text = latin_to_hangul(text)
|
| 201 |
+
text = number_to_hangul(text)
|
| 202 |
+
text=re.sub('[\uac00-\ud7af]+',lambda x:ko_pron.romanise(x.group(0),'ipa').split('] ~ [')[0],text)
|
| 203 |
+
for regex, replacement in _ipa_to_lazy_ipa:
|
| 204 |
+
text = re.sub(regex, replacement, text)
|
| 205 |
+
return text
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
def korean_to_ipa(text):
|
| 209 |
+
text = korean_to_lazy_ipa(text)
|
| 210 |
+
return text.replace('ʧ','tʃ').replace('ʥ','dʑ')
|
text/mandarin.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import re
|
| 4 |
+
from pypinyin import lazy_pinyin, BOPOMOFO
|
| 5 |
+
import jieba
|
| 6 |
+
import cn2an
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# List of (Latin alphabet, bopomofo) pairs:
|
| 11 |
+
_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
| 12 |
+
('a', 'ㄟˉ'),
|
| 13 |
+
('b', 'ㄅㄧˋ'),
|
| 14 |
+
('c', 'ㄙㄧˉ'),
|
| 15 |
+
('d', 'ㄉㄧˋ'),
|
| 16 |
+
('e', 'ㄧˋ'),
|
| 17 |
+
('f', 'ㄝˊㄈㄨˋ'),
|
| 18 |
+
('g', 'ㄐㄧˋ'),
|
| 19 |
+
('h', 'ㄝˇㄑㄩˋ'),
|
| 20 |
+
('i', 'ㄞˋ'),
|
| 21 |
+
('j', 'ㄐㄟˋ'),
|
| 22 |
+
('k', 'ㄎㄟˋ'),
|
| 23 |
+
('l', 'ㄝˊㄛˋ'),
|
| 24 |
+
('m', 'ㄝˊㄇㄨˋ'),
|
| 25 |
+
('n', 'ㄣˉ'),
|
| 26 |
+
('o', 'ㄡˉ'),
|
| 27 |
+
('p', 'ㄆㄧˉ'),
|
| 28 |
+
('q', 'ㄎㄧㄡˉ'),
|
| 29 |
+
('r', 'ㄚˋ'),
|
| 30 |
+
('s', 'ㄝˊㄙˋ'),
|
| 31 |
+
('t', 'ㄊㄧˋ'),
|
| 32 |
+
('u', 'ㄧㄡˉ'),
|
| 33 |
+
('v', 'ㄨㄧˉ'),
|
| 34 |
+
('w', 'ㄉㄚˋㄅㄨˋㄌㄧㄡˋ'),
|
| 35 |
+
('x', 'ㄝˉㄎㄨˋㄙˋ'),
|
| 36 |
+
('y', 'ㄨㄞˋ'),
|
| 37 |
+
('z', 'ㄗㄟˋ')
|
| 38 |
+
]]
|
| 39 |
+
|
| 40 |
+
# List of (bopomofo, romaji) pairs:
|
| 41 |
+
_bopomofo_to_romaji = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 42 |
+
('ㄅㄛ', 'p⁼wo'),
|
| 43 |
+
('ㄆㄛ', 'pʰwo'),
|
| 44 |
+
('ㄇㄛ', 'mwo'),
|
| 45 |
+
('ㄈㄛ', 'fwo'),
|
| 46 |
+
('ㄅ', 'p⁼'),
|
| 47 |
+
('ㄆ', 'pʰ'),
|
| 48 |
+
('ㄇ', 'm'),
|
| 49 |
+
('ㄈ', 'f'),
|
| 50 |
+
('ㄉ', 't⁼'),
|
| 51 |
+
('ㄊ', 'tʰ'),
|
| 52 |
+
('ㄋ', 'n'),
|
| 53 |
+
('ㄌ', 'l'),
|
| 54 |
+
('ㄍ', 'k⁼'),
|
| 55 |
+
('ㄎ', 'kʰ'),
|
| 56 |
+
('ㄏ', 'h'),
|
| 57 |
+
('ㄐ', 'ʧ⁼'),
|
| 58 |
+
('ㄑ', 'ʧʰ'),
|
| 59 |
+
('ㄒ', 'ʃ'),
|
| 60 |
+
('ㄓ', 'ʦ`⁼'),
|
| 61 |
+
('ㄔ', 'ʦ`ʰ'),
|
| 62 |
+
('ㄕ', 's`'),
|
| 63 |
+
('ㄖ', 'ɹ`'),
|
| 64 |
+
('ㄗ', 'ʦ⁼'),
|
| 65 |
+
('ㄘ', 'ʦʰ'),
|
| 66 |
+
('ㄙ', 's'),
|
| 67 |
+
('ㄚ', 'a'),
|
| 68 |
+
('ㄛ', 'o'),
|
| 69 |
+
('ㄜ', 'ə'),
|
| 70 |
+
('ㄝ', 'e'),
|
| 71 |
+
('ㄞ', 'ai'),
|
| 72 |
+
('ㄟ', 'ei'),
|
| 73 |
+
('ㄠ', 'au'),
|
| 74 |
+
('ㄡ', 'ou'),
|
| 75 |
+
('ㄧㄢ', 'yeNN'),
|
| 76 |
+
('ㄢ', 'aNN'),
|
| 77 |
+
('ㄧㄣ', 'iNN'),
|
| 78 |
+
('ㄣ', 'əNN'),
|
| 79 |
+
('ㄤ', 'aNg'),
|
| 80 |
+
('ㄧㄥ', 'iNg'),
|
| 81 |
+
('ㄨㄥ', 'uNg'),
|
| 82 |
+
('ㄩㄥ', 'yuNg'),
|
| 83 |
+
('ㄥ', 'əNg'),
|
| 84 |
+
('ㄦ', 'əɻ'),
|
| 85 |
+
('ㄧ', 'i'),
|
| 86 |
+
('ㄨ', 'u'),
|
| 87 |
+
('ㄩ', 'ɥ'),
|
| 88 |
+
('ˉ', '→'),
|
| 89 |
+
('ˊ', '↑'),
|
| 90 |
+
('ˇ', '↓↑'),
|
| 91 |
+
('ˋ', '↓'),
|
| 92 |
+
('˙', ''),
|
| 93 |
+
(',', ','),
|
| 94 |
+
('。', '.'),
|
| 95 |
+
('!', '!'),
|
| 96 |
+
('?', '?'),
|
| 97 |
+
('—', '-')
|
| 98 |
+
]]
|
| 99 |
+
|
| 100 |
+
# List of (romaji, ipa) pairs:
|
| 101 |
+
_romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
| 102 |
+
('ʃy', 'ʃ'),
|
| 103 |
+
('ʧʰy', 'ʧʰ'),
|
| 104 |
+
('ʧ⁼y', 'ʧ⁼'),
|
| 105 |
+
('NN', 'n'),
|
| 106 |
+
('Ng', 'ŋ'),
|
| 107 |
+
('y', 'j'),
|
| 108 |
+
('h', 'x')
|
| 109 |
+
]]
|
| 110 |
+
|
| 111 |
+
# List of (bopomofo, ipa) pairs:
|
| 112 |
+
_bopomofo_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 113 |
+
('ㄅㄛ', 'p⁼wo'),
|
| 114 |
+
('ㄆㄛ', 'pʰwo'),
|
| 115 |
+
('ㄇㄛ', 'mwo'),
|
| 116 |
+
('ㄈㄛ', 'fwo'),
|
| 117 |
+
('ㄅ', 'p⁼'),
|
| 118 |
+
('ㄆ', 'pʰ'),
|
| 119 |
+
('ㄇ', 'm'),
|
| 120 |
+
('ㄈ', 'f'),
|
| 121 |
+
('ㄉ', 't⁼'),
|
| 122 |
+
('ㄊ', 'tʰ'),
|
| 123 |
+
('ㄋ', 'n'),
|
| 124 |
+
('ㄌ', 'l'),
|
| 125 |
+
('ㄍ', 'k⁼'),
|
| 126 |
+
('ㄎ', 'kʰ'),
|
| 127 |
+
('ㄏ', 'x'),
|
| 128 |
+
('ㄐ', 'tʃ⁼'),
|
| 129 |
+
('ㄑ', 'tʃʰ'),
|
| 130 |
+
('ㄒ', 'ʃ'),
|
| 131 |
+
('ㄓ', 'ts`⁼'),
|
| 132 |
+
('ㄔ', 'ts`ʰ'),
|
| 133 |
+
('ㄕ', 's`'),
|
| 134 |
+
('ㄖ', 'ɹ`'),
|
| 135 |
+
('ㄗ', 'ts⁼'),
|
| 136 |
+
('ㄘ', 'tsʰ'),
|
| 137 |
+
('ㄙ', 's'),
|
| 138 |
+
('ㄚ', 'a'),
|
| 139 |
+
('ㄛ', 'o'),
|
| 140 |
+
('ㄜ', 'ə'),
|
| 141 |
+
('ㄝ', 'ɛ'),
|
| 142 |
+
('ㄞ', 'aɪ'),
|
| 143 |
+
('ㄟ', 'eɪ'),
|
| 144 |
+
('ㄠ', 'ɑʊ'),
|
| 145 |
+
('ㄡ', 'oʊ'),
|
| 146 |
+
('ㄧㄢ', 'jɛn'),
|
| 147 |
+
('ㄩㄢ', 'ɥæn'),
|
| 148 |
+
('ㄢ', 'an'),
|
| 149 |
+
('ㄧㄣ', 'in'),
|
| 150 |
+
('ㄩㄣ', 'ɥn'),
|
| 151 |
+
('ㄣ', 'ən'),
|
| 152 |
+
('ㄤ', 'ɑŋ'),
|
| 153 |
+
('ㄧㄥ', 'iŋ'),
|
| 154 |
+
('ㄨㄥ', 'ʊŋ'),
|
| 155 |
+
('ㄩㄥ', 'jʊŋ'),
|
| 156 |
+
('ㄥ', 'əŋ'),
|
| 157 |
+
('ㄦ', 'əɻ'),
|
| 158 |
+
('ㄧ', 'i'),
|
| 159 |
+
('ㄨ', 'u'),
|
| 160 |
+
('ㄩ', 'ɥ'),
|
| 161 |
+
('ˉ', '→'),
|
| 162 |
+
('ˊ', '↑'),
|
| 163 |
+
('ˇ', '↓↑'),
|
| 164 |
+
('ˋ', '↓'),
|
| 165 |
+
('˙', ''),
|
| 166 |
+
(',', ','),
|
| 167 |
+
('。', '.'),
|
| 168 |
+
('!', '!'),
|
| 169 |
+
('?', '?'),
|
| 170 |
+
('—', '-')
|
| 171 |
+
]]
|
| 172 |
+
|
| 173 |
+
# List of (bopomofo, ipa2) pairs:
|
| 174 |
+
_bopomofo_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 175 |
+
('ㄅㄛ', 'pwo'),
|
| 176 |
+
('ㄆㄛ', 'pʰwo'),
|
| 177 |
+
('ㄇㄛ', 'mwo'),
|
| 178 |
+
('ㄈㄛ', 'fwo'),
|
| 179 |
+
('ㄅ', 'p'),
|
| 180 |
+
('ㄆ', 'pʰ'),
|
| 181 |
+
('ㄇ', 'm'),
|
| 182 |
+
('ㄈ', 'f'),
|
| 183 |
+
('ㄉ', 't'),
|
| 184 |
+
('ㄊ', 'tʰ'),
|
| 185 |
+
('ㄋ', 'n'),
|
| 186 |
+
('ㄌ', 'l'),
|
| 187 |
+
('ㄍ', 'k'),
|
| 188 |
+
('ㄎ', 'kʰ'),
|
| 189 |
+
('ㄏ', 'h'),
|
| 190 |
+
('ㄐ', 'tɕ'),
|
| 191 |
+
('ㄑ', 'tɕʰ'),
|
| 192 |
+
('ㄒ', 'ɕ'),
|
| 193 |
+
('ㄓ', 'tʂ'),
|
| 194 |
+
('ㄔ', 'tʂʰ'),
|
| 195 |
+
('ㄕ', 'ʂ'),
|
| 196 |
+
('ㄖ', 'ɻ'),
|
| 197 |
+
('ㄗ', 'ts'),
|
| 198 |
+
('ㄘ', 'tsʰ'),
|
| 199 |
+
('ㄙ', 's'),
|
| 200 |
+
('ㄚ', 'a'),
|
| 201 |
+
('ㄛ', 'o'),
|
| 202 |
+
('ㄜ', 'ɤ'),
|
| 203 |
+
('ㄝ', 'ɛ'),
|
| 204 |
+
('ㄞ', 'aɪ'),
|
| 205 |
+
('ㄟ', 'eɪ'),
|
| 206 |
+
('ㄠ', 'ɑʊ'),
|
| 207 |
+
('ㄡ', 'oʊ'),
|
| 208 |
+
('ㄧㄢ', 'jɛn'),
|
| 209 |
+
('ㄩㄢ', 'yæn'),
|
| 210 |
+
('ㄢ', 'an'),
|
| 211 |
+
('ㄧㄣ', 'in'),
|
| 212 |
+
('ㄩㄣ', 'yn'),
|
| 213 |
+
('ㄣ', 'ən'),
|
| 214 |
+
('ㄤ', 'ɑŋ'),
|
| 215 |
+
('ㄧㄥ', 'iŋ'),
|
| 216 |
+
('ㄨㄥ', 'ʊŋ'),
|
| 217 |
+
('ㄩㄥ', 'jʊŋ'),
|
| 218 |
+
('ㄥ', 'ɤŋ'),
|
| 219 |
+
('ㄦ', 'əɻ'),
|
| 220 |
+
('ㄧ', 'i'),
|
| 221 |
+
('ㄨ', 'u'),
|
| 222 |
+
('ㄩ', 'y'),
|
| 223 |
+
('ˉ', '˥'),
|
| 224 |
+
('ˊ', '˧˥'),
|
| 225 |
+
('ˇ', '˨˩˦'),
|
| 226 |
+
('ˋ', '˥˩'),
|
| 227 |
+
('˙', ''),
|
| 228 |
+
(',', ','),
|
| 229 |
+
('。', '.'),
|
| 230 |
+
('!', '!'),
|
| 231 |
+
('?', '?'),
|
| 232 |
+
('—', '-')
|
| 233 |
+
]]
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def number_to_chinese(text):
|
| 237 |
+
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
|
| 238 |
+
for number in numbers:
|
| 239 |
+
text = text.replace(number, cn2an.an2cn(number), 1)
|
| 240 |
+
return text
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def chinese_to_bopomofo(text):
|
| 244 |
+
text = text.replace('、', ',').replace(';', ',').replace(':', ',')
|
| 245 |
+
words = jieba.lcut(text, cut_all=False)
|
| 246 |
+
text = ''
|
| 247 |
+
for word in words:
|
| 248 |
+
bopomofos = lazy_pinyin(word, BOPOMOFO)
|
| 249 |
+
if not re.search('[\u4e00-\u9fff]', word):
|
| 250 |
+
text += word
|
| 251 |
+
continue
|
| 252 |
+
for i in range(len(bopomofos)):
|
| 253 |
+
bopomofos[i] = re.sub(r'([\u3105-\u3129])$', r'\1ˉ', bopomofos[i])
|
| 254 |
+
if text != '':
|
| 255 |
+
text += ' '
|
| 256 |
+
text += ''.join(bopomofos)
|
| 257 |
+
return text
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def latin_to_bopomofo(text):
|
| 261 |
+
for regex, replacement in _latin_to_bopomofo:
|
| 262 |
+
text = re.sub(regex, replacement, text)
|
| 263 |
+
return text
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def bopomofo_to_romaji(text):
|
| 267 |
+
for regex, replacement in _bopomofo_to_romaji:
|
| 268 |
+
text = re.sub(regex, replacement, text)
|
| 269 |
+
return text
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def bopomofo_to_ipa(text):
|
| 273 |
+
for regex, replacement in _bopomofo_to_ipa:
|
| 274 |
+
text = re.sub(regex, replacement, text)
|
| 275 |
+
return text
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def bopomofo_to_ipa2(text):
|
| 279 |
+
for regex, replacement in _bopomofo_to_ipa2:
|
| 280 |
+
text = re.sub(regex, replacement, text)
|
| 281 |
+
return text
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def chinese_to_romaji(text):
|
| 285 |
+
text = number_to_chinese(text)
|
| 286 |
+
text = chinese_to_bopomofo(text)
|
| 287 |
+
text = latin_to_bopomofo(text)
|
| 288 |
+
text = bopomofo_to_romaji(text)
|
| 289 |
+
text = re.sub('i([aoe])', r'y\1', text)
|
| 290 |
+
text = re.sub('u([aoəe])', r'w\1', text)
|
| 291 |
+
text = re.sub('([ʦsɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
|
| 292 |
+
r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
|
| 293 |
+
text = re.sub('([ʦs][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text)
|
| 294 |
+
return text
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
def chinese_to_lazy_ipa(text):
|
| 298 |
+
text = chinese_to_romaji(text)
|
| 299 |
+
for regex, replacement in _romaji_to_ipa:
|
| 300 |
+
text = re.sub(regex, replacement, text)
|
| 301 |
+
return text
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def chinese_to_ipa(text):
|
| 305 |
+
text = number_to_chinese(text)
|
| 306 |
+
text = chinese_to_bopomofo(text)
|
| 307 |
+
text = latin_to_bopomofo(text)
|
| 308 |
+
text = bopomofo_to_ipa(text)
|
| 309 |
+
text = re.sub('i([aoe])', r'j\1', text)
|
| 310 |
+
text = re.sub('u([aoəe])', r'w\1', text)
|
| 311 |
+
text = re.sub('([sɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
|
| 312 |
+
r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
|
| 313 |
+
text = re.sub('([s][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text)
|
| 314 |
+
return text
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def chinese_to_ipa2(text):
|
| 318 |
+
text = number_to_chinese(text)
|
| 319 |
+
text = chinese_to_bopomofo(text)
|
| 320 |
+
text = latin_to_bopomofo(text)
|
| 321 |
+
text = bopomofo_to_ipa2(text)
|
| 322 |
+
text = re.sub(r'i([aoe])', r'j\1', text)
|
| 323 |
+
text = re.sub(r'u([aoəe])', r'w\1', text)
|
| 324 |
+
text = re.sub(r'([ʂɹ]ʰ?)([˩˨˧˦˥ ]+|$)', r'\1ʅ\2', text)
|
| 325 |
+
text = re.sub(r'(sʰ?)([˩˨˧˦˥ ]+|$)', r'\1ɿ\2', text)
|
| 326 |
+
return text
|
text/ngu_dialect.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import opencc
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
dialects = {'SZ': 'suzhou', 'WX': 'wuxi', 'CZ': 'changzhou', 'HZ': 'hangzhou',
|
| 6 |
+
'SX': 'shaoxing', 'NB': 'ningbo', 'JJ': 'jingjiang', 'YX': 'yixing',
|
| 7 |
+
'JD': 'jiading', 'ZR': 'zhenru', 'PH': 'pinghu', 'TX': 'tongxiang',
|
| 8 |
+
'JS': 'jiashan', 'HN': 'xiashi', 'LP': 'linping', 'XS': 'xiaoshan',
|
| 9 |
+
'FY': 'fuyang', 'RA': 'ruao', 'CX': 'cixi', 'SM': 'sanmen',
|
| 10 |
+
'TT': 'tiantai', 'WZ': 'wenzhou', 'SC': 'suichang', 'YB': 'youbu'}
|
| 11 |
+
|
| 12 |
+
converters = {}
|
| 13 |
+
|
| 14 |
+
for dialect in dialects.values():
|
| 15 |
+
try:
|
| 16 |
+
converters[dialect] = opencc.OpenCC(dialect)
|
| 17 |
+
except:
|
| 18 |
+
pass
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def ngu_dialect_to_ipa(text, dialect):
|
| 22 |
+
dialect = dialects[dialect]
|
| 23 |
+
text = converters[dialect].convert(text).replace('-','').replace('$',' ')
|
| 24 |
+
text = re.sub(r'[、;:]', ',', text)
|
| 25 |
+
text = re.sub(r'\s*,\s*', ', ', text)
|
| 26 |
+
text = re.sub(r'\s*。\s*', '. ', text)
|
| 27 |
+
text = re.sub(r'\s*?\s*', '? ', text)
|
| 28 |
+
text = re.sub(r'\s*!\s*', '! ', text)
|
| 29 |
+
text = re.sub(r'\s*$', '', text)
|
| 30 |
+
return text
|
text/sanskrit.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from indic_transliteration import sanscript
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# List of (iast, ipa) pairs:
|
| 6 |
+
_iast_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 7 |
+
('a', 'ə'),
|
| 8 |
+
('ā', 'aː'),
|
| 9 |
+
('ī', 'iː'),
|
| 10 |
+
('ū', 'uː'),
|
| 11 |
+
('ṛ', 'ɹ`'),
|
| 12 |
+
('ṝ', 'ɹ`ː'),
|
| 13 |
+
('ḷ', 'l`'),
|
| 14 |
+
('ḹ', 'l`ː'),
|
| 15 |
+
('e', 'eː'),
|
| 16 |
+
('o', 'oː'),
|
| 17 |
+
('k', 'k⁼'),
|
| 18 |
+
('k⁼h', 'kʰ'),
|
| 19 |
+
('g', 'g⁼'),
|
| 20 |
+
('g⁼h', 'gʰ'),
|
| 21 |
+
('ṅ', 'ŋ'),
|
| 22 |
+
('c', 'ʧ⁼'),
|
| 23 |
+
('ʧ⁼h', 'ʧʰ'),
|
| 24 |
+
('j', 'ʥ⁼'),
|
| 25 |
+
('ʥ⁼h', 'ʥʰ'),
|
| 26 |
+
('ñ', 'n^'),
|
| 27 |
+
('ṭ', 't`⁼'),
|
| 28 |
+
('t`⁼h', 't`ʰ'),
|
| 29 |
+
('ḍ', 'd`⁼'),
|
| 30 |
+
('d`⁼h', 'd`ʰ'),
|
| 31 |
+
('ṇ', 'n`'),
|
| 32 |
+
('t', 't⁼'),
|
| 33 |
+
('t⁼h', 'tʰ'),
|
| 34 |
+
('d', 'd⁼'),
|
| 35 |
+
('d⁼h', 'dʰ'),
|
| 36 |
+
('p', 'p⁼'),
|
| 37 |
+
('p⁼h', 'pʰ'),
|
| 38 |
+
('b', 'b⁼'),
|
| 39 |
+
('b⁼h', 'bʰ'),
|
| 40 |
+
('y', 'j'),
|
| 41 |
+
('ś', 'ʃ'),
|
| 42 |
+
('ṣ', 's`'),
|
| 43 |
+
('r', 'ɾ'),
|
| 44 |
+
('l̤', 'l`'),
|
| 45 |
+
('h', 'ɦ'),
|
| 46 |
+
("'", ''),
|
| 47 |
+
('~', '^'),
|
| 48 |
+
('ṃ', '^')
|
| 49 |
+
]]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def devanagari_to_ipa(text):
|
| 53 |
+
text = text.replace('ॐ', 'ओम्')
|
| 54 |
+
text = re.sub(r'\s*।\s*$', '.', text)
|
| 55 |
+
text = re.sub(r'\s*।\s*', ', ', text)
|
| 56 |
+
text = re.sub(r'\s*॥', '.', text)
|
| 57 |
+
text = sanscript.transliterate(text, sanscript.DEVANAGARI, sanscript.IAST)
|
| 58 |
+
for regex, replacement in _iast_to_ipa:
|
| 59 |
+
text = re.sub(regex, replacement, text)
|
| 60 |
+
text = re.sub('(.)[`ː]*ḥ', lambda x: x.group(0)
|
| 61 |
+
[:-1]+'h'+x.group(1)+'*', text)
|
| 62 |
+
return text
|
text/shanghainese.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import cn2an
|
| 3 |
+
import opencc
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
converter = opencc.OpenCC('zaonhe')
|
| 7 |
+
|
| 8 |
+
# List of (Latin alphabet, ipa) pairs:
|
| 9 |
+
_latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 10 |
+
('A', 'ᴇ'),
|
| 11 |
+
('B', 'bi'),
|
| 12 |
+
('C', 'si'),
|
| 13 |
+
('D', 'di'),
|
| 14 |
+
('E', 'i'),
|
| 15 |
+
('F', 'ᴇf'),
|
| 16 |
+
('G', 'dʑi'),
|
| 17 |
+
('H', 'ᴇtɕʰ'),
|
| 18 |
+
('I', 'ᴀi'),
|
| 19 |
+
('J', 'dʑᴇ'),
|
| 20 |
+
('K', 'kʰᴇ'),
|
| 21 |
+
('L', 'ᴇl'),
|
| 22 |
+
('M', 'ᴇm'),
|
| 23 |
+
('N', 'ᴇn'),
|
| 24 |
+
('O', 'o'),
|
| 25 |
+
('P', 'pʰi'),
|
| 26 |
+
('Q', 'kʰiu'),
|
| 27 |
+
('R', 'ᴀl'),
|
| 28 |
+
('S', 'ᴇs'),
|
| 29 |
+
('T', 'tʰi'),
|
| 30 |
+
('U', 'ɦiu'),
|
| 31 |
+
('V', 'vi'),
|
| 32 |
+
('W', 'dᴀbɤliu'),
|
| 33 |
+
('X', 'ᴇks'),
|
| 34 |
+
('Y', 'uᴀi'),
|
| 35 |
+
('Z', 'zᴇ')
|
| 36 |
+
]]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def _number_to_shanghainese(num):
|
| 40 |
+
num = cn2an.an2cn(num).replace('一十','十').replace('二十', '廿').replace('二', '两')
|
| 41 |
+
return re.sub(r'((?:^|[^三四五六七八九])十|廿)两', r'\1二', num)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def number_to_shanghainese(text):
|
| 45 |
+
return re.sub(r'\d+(?:\.?\d+)?', lambda x: _number_to_shanghainese(x.group()), text)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def latin_to_ipa(text):
|
| 49 |
+
for regex, replacement in _latin_to_ipa:
|
| 50 |
+
text = re.sub(regex, replacement, text)
|
| 51 |
+
return text
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def shanghainese_to_ipa(text):
|
| 55 |
+
text = number_to_shanghainese(text.upper())
|
| 56 |
+
text = converter.convert(text).replace('-','').replace('$',' ')
|
| 57 |
+
text = re.sub(r'[A-Z]', lambda x: latin_to_ipa(x.group())+' ', text)
|
| 58 |
+
text = re.sub(r'[、;:]', ',', text)
|
| 59 |
+
text = re.sub(r'\s*,\s*', ', ', text)
|
| 60 |
+
text = re.sub(r'\s*。\s*', '. ', text)
|
| 61 |
+
text = re.sub(r'\s*?\s*', '? ', text)
|
| 62 |
+
text = re.sub(r'\s*!\s*', '! ', text)
|
| 63 |
+
text = re.sub(r'\s*$', '', text)
|
| 64 |
+
return text
|
text/symbols.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
Defines the set of symbols used in text input to the model.
|
| 3 |
+
'''
|
| 4 |
+
|
| 5 |
+
# japanese_cleaners
|
| 6 |
+
# _pad = '_'
|
| 7 |
+
# _punctuation = ',.!?-'
|
| 8 |
+
# _letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧ↓↑ '
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
'''# japanese_cleaners2
|
| 12 |
+
_pad = '_'
|
| 13 |
+
_punctuation = ',.!?-~…'
|
| 14 |
+
_letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧʦ↓↑ '
|
| 15 |
+
'''
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
'''# korean_cleaners
|
| 19 |
+
_pad = '_'
|
| 20 |
+
_punctuation = ',.!?…~'
|
| 21 |
+
_letters = 'ㄱㄴㄷㄹㅁㅂㅅㅇㅈㅊㅋㅌㅍㅎㄲㄸㅃㅆㅉㅏㅓㅗㅜㅡㅣㅐㅔ '
|
| 22 |
+
'''
|
| 23 |
+
|
| 24 |
+
'''# chinese_cleaners
|
| 25 |
+
_pad = '_'
|
| 26 |
+
_punctuation = ',。!?—…'
|
| 27 |
+
_letters = 'ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎㄏㄐㄑㄒㄓㄔㄕㄖㄗㄘㄙㄚㄛㄜㄝㄞㄟㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩˉˊˇˋ˙ '
|
| 28 |
+
'''
|
| 29 |
+
|
| 30 |
+
# # zh_ja_mixture_cleaners
|
| 31 |
+
# _pad = '_'
|
| 32 |
+
# _punctuation = ',.!?-~…'
|
| 33 |
+
# _letters = 'AEINOQUabdefghijklmnoprstuvwyzʃʧʦɯɹəɥ⁼ʰ`→↓↑ '
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
'''# sanskrit_cleaners
|
| 37 |
+
_pad = '_'
|
| 38 |
+
_punctuation = '।'
|
| 39 |
+
_letters = 'ँंःअआइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलळवशषसहऽािीुूृॄेैोौ्ॠॢ '
|
| 40 |
+
'''
|
| 41 |
+
|
| 42 |
+
'''# cjks_cleaners
|
| 43 |
+
_pad = '_'
|
| 44 |
+
_punctuation = ',.!?-~…'
|
| 45 |
+
_letters = 'NQabdefghijklmnopstuvwxyzʃʧʥʦɯɹəɥçɸɾβŋɦː⁼ʰ`^#*=→↓↑ '
|
| 46 |
+
'''
|
| 47 |
+
|
| 48 |
+
'''# thai_cleaners
|
| 49 |
+
_pad = '_'
|
| 50 |
+
_punctuation = '.!? '
|
| 51 |
+
_letters = 'กขฃคฆงจฉชซฌญฎฏฐฑฒณดตถทธนบปผฝพฟภมยรฤลวศษสหฬอฮฯะัาำิีึืุูเแโใไๅๆ็่้๊๋์'
|
| 52 |
+
'''
|
| 53 |
+
|
| 54 |
+
# # cjke_cleaners2
|
| 55 |
+
_pad = '_'
|
| 56 |
+
_punctuation = ',.!?-~…'
|
| 57 |
+
_letters = 'NQabdefghijklmnopstuvwxyzɑæʃʑçɯɪɔɛɹðəɫɥɸʊɾʒθβŋɦ⁼ʰ`^#*=ˈˌ→↓↑ '
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
'''# shanghainese_cleaners
|
| 61 |
+
_pad = '_'
|
| 62 |
+
_punctuation = ',.!?…'
|
| 63 |
+
_letters = 'abdfghiklmnopstuvyzøŋȵɑɔɕəɤɦɪɿʑʔʰ̩̃ᴀᴇ15678 '
|
| 64 |
+
'''
|
| 65 |
+
|
| 66 |
+
'''# chinese_dialect_cleaners
|
| 67 |
+
_pad = '_'
|
| 68 |
+
_punctuation = ',.!?~…─'
|
| 69 |
+
_letters = '#Nabdefghijklmnoprstuvwxyzæçøŋœȵɐɑɒɓɔɕɗɘəɚɛɜɣɤɦɪɭɯɵɷɸɻɾɿʂʅʊʋʌʏʑʔʦʮʰʷˀː˥˦˧˨˩̥̩̃̚ᴀᴇ↑↓∅ⱼ '
|
| 70 |
+
'''
|
| 71 |
+
|
| 72 |
+
# Export all symbols:
|
| 73 |
+
symbols = [_pad] + list(_punctuation) + list(_letters)
|
| 74 |
+
|
| 75 |
+
# Special symbol ids
|
| 76 |
+
SPACE_ID = symbols.index(" ")
|
text/thai.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from num_thai.thainumbers import NumThai
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
num = NumThai()
|
| 6 |
+
|
| 7 |
+
# List of (Latin alphabet, Thai) pairs:
|
| 8 |
+
_latin_to_thai = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
| 9 |
+
('a', 'เอ'),
|
| 10 |
+
('b','บี'),
|
| 11 |
+
('c','ซี'),
|
| 12 |
+
('d','ดี'),
|
| 13 |
+
('e','อี'),
|
| 14 |
+
('f','เอฟ'),
|
| 15 |
+
('g','จี'),
|
| 16 |
+
('h','เอช'),
|
| 17 |
+
('i','ไอ'),
|
| 18 |
+
('j','เจ'),
|
| 19 |
+
('k','เค'),
|
| 20 |
+
('l','แอล'),
|
| 21 |
+
('m','เอ็ม'),
|
| 22 |
+
('n','เอ็น'),
|
| 23 |
+
('o','โอ'),
|
| 24 |
+
('p','พี'),
|
| 25 |
+
('q','คิว'),
|
| 26 |
+
('r','แอร์'),
|
| 27 |
+
('s','เอส'),
|
| 28 |
+
('t','ที'),
|
| 29 |
+
('u','ยู'),
|
| 30 |
+
('v','วี'),
|
| 31 |
+
('w','ดับเบิลยู'),
|
| 32 |
+
('x','เอ็กซ์'),
|
| 33 |
+
('y','วาย'),
|
| 34 |
+
('z','ซี')
|
| 35 |
+
]]
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def num_to_thai(text):
|
| 39 |
+
return re.sub(r'(?:\d+(?:,?\d+)?)+(?:\.\d+(?:,?\d+)?)?', lambda x: ''.join(num.NumberToTextThai(float(x.group(0).replace(',', '')))), text)
|
| 40 |
+
|
| 41 |
+
def latin_to_thai(text):
|
| 42 |
+
for regex, replacement in _latin_to_thai:
|
| 43 |
+
text = re.sub(regex, replacement, text)
|
| 44 |
+
return text
|
transforms.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn import functional as F
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
| 8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
| 9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def piecewise_rational_quadratic_transform(inputs,
|
| 13 |
+
unnormalized_widths,
|
| 14 |
+
unnormalized_heights,
|
| 15 |
+
unnormalized_derivatives,
|
| 16 |
+
inverse=False,
|
| 17 |
+
tails=None,
|
| 18 |
+
tail_bound=1.,
|
| 19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
| 22 |
+
|
| 23 |
+
if tails is None:
|
| 24 |
+
spline_fn = rational_quadratic_spline
|
| 25 |
+
spline_kwargs = {}
|
| 26 |
+
else:
|
| 27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
| 28 |
+
spline_kwargs = {
|
| 29 |
+
'tails': tails,
|
| 30 |
+
'tail_bound': tail_bound
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
outputs, logabsdet = spline_fn(
|
| 34 |
+
inputs=inputs,
|
| 35 |
+
unnormalized_widths=unnormalized_widths,
|
| 36 |
+
unnormalized_heights=unnormalized_heights,
|
| 37 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
| 38 |
+
inverse=inverse,
|
| 39 |
+
min_bin_width=min_bin_width,
|
| 40 |
+
min_bin_height=min_bin_height,
|
| 41 |
+
min_derivative=min_derivative,
|
| 42 |
+
**spline_kwargs
|
| 43 |
+
)
|
| 44 |
+
return outputs, logabsdet
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
| 48 |
+
bin_locations[..., -1] += eps
|
| 49 |
+
return torch.sum(
|
| 50 |
+
inputs[..., None] >= bin_locations,
|
| 51 |
+
dim=-1
|
| 52 |
+
) - 1
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def unconstrained_rational_quadratic_spline(inputs,
|
| 56 |
+
unnormalized_widths,
|
| 57 |
+
unnormalized_heights,
|
| 58 |
+
unnormalized_derivatives,
|
| 59 |
+
inverse=False,
|
| 60 |
+
tails='linear',
|
| 61 |
+
tail_bound=1.,
|
| 62 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 63 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 64 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
| 65 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
| 66 |
+
outside_interval_mask = ~inside_interval_mask
|
| 67 |
+
|
| 68 |
+
outputs = torch.zeros_like(inputs)
|
| 69 |
+
logabsdet = torch.zeros_like(inputs)
|
| 70 |
+
|
| 71 |
+
if tails == 'linear':
|
| 72 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
| 73 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
| 74 |
+
unnormalized_derivatives[..., 0] = constant
|
| 75 |
+
unnormalized_derivatives[..., -1] = constant
|
| 76 |
+
|
| 77 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
| 78 |
+
logabsdet[outside_interval_mask] = 0
|
| 79 |
+
else:
|
| 80 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
| 81 |
+
|
| 82 |
+
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
| 83 |
+
inputs=inputs[inside_interval_mask],
|
| 84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
| 85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
| 86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
| 87 |
+
inverse=inverse,
|
| 88 |
+
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
| 89 |
+
min_bin_width=min_bin_width,
|
| 90 |
+
min_bin_height=min_bin_height,
|
| 91 |
+
min_derivative=min_derivative
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
return outputs, logabsdet
|
| 95 |
+
|
| 96 |
+
def rational_quadratic_spline(inputs,
|
| 97 |
+
unnormalized_widths,
|
| 98 |
+
unnormalized_heights,
|
| 99 |
+
unnormalized_derivatives,
|
| 100 |
+
inverse=False,
|
| 101 |
+
left=0., right=1., bottom=0., top=1.,
|
| 102 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 103 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 104 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
| 105 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
| 106 |
+
raise ValueError('Input to a transform is not within its domain')
|
| 107 |
+
|
| 108 |
+
num_bins = unnormalized_widths.shape[-1]
|
| 109 |
+
|
| 110 |
+
if min_bin_width * num_bins > 1.0:
|
| 111 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
| 112 |
+
if min_bin_height * num_bins > 1.0:
|
| 113 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
| 114 |
+
|
| 115 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
| 116 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
| 117 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
| 118 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
| 119 |
+
cumwidths = (right - left) * cumwidths + left
|
| 120 |
+
cumwidths[..., 0] = left
|
| 121 |
+
cumwidths[..., -1] = right
|
| 122 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
| 123 |
+
|
| 124 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
| 125 |
+
|
| 126 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
| 127 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
| 128 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
| 129 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
| 130 |
+
cumheights = (top - bottom) * cumheights + bottom
|
| 131 |
+
cumheights[..., 0] = bottom
|
| 132 |
+
cumheights[..., -1] = top
|
| 133 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
| 134 |
+
|
| 135 |
+
if inverse:
|
| 136 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
| 137 |
+
else:
|
| 138 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
| 139 |
+
|
| 140 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
| 141 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
| 142 |
+
|
| 143 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
| 144 |
+
delta = heights / widths
|
| 145 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
| 146 |
+
|
| 147 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
| 148 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
| 149 |
+
|
| 150 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
| 151 |
+
|
| 152 |
+
if inverse:
|
| 153 |
+
a = (((inputs - input_cumheights) * (input_derivatives
|
| 154 |
+
+ input_derivatives_plus_one
|
| 155 |
+
- 2 * input_delta)
|
| 156 |
+
+ input_heights * (input_delta - input_derivatives)))
|
| 157 |
+
b = (input_heights * input_derivatives
|
| 158 |
+
- (inputs - input_cumheights) * (input_derivatives
|
| 159 |
+
+ input_derivatives_plus_one
|
| 160 |
+
- 2 * input_delta))
|
| 161 |
+
c = - input_delta * (inputs - input_cumheights)
|
| 162 |
+
|
| 163 |
+
discriminant = b.pow(2) - 4 * a * c
|
| 164 |
+
assert (discriminant >= 0).all()
|
| 165 |
+
|
| 166 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
| 167 |
+
outputs = root * input_bin_widths + input_cumwidths
|
| 168 |
+
|
| 169 |
+
theta_one_minus_theta = root * (1 - root)
|
| 170 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 171 |
+
* theta_one_minus_theta)
|
| 172 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
| 173 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 174 |
+
+ input_derivatives * (1 - root).pow(2))
|
| 175 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 176 |
+
|
| 177 |
+
return outputs, -logabsdet
|
| 178 |
+
else:
|
| 179 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
| 180 |
+
theta_one_minus_theta = theta * (1 - theta)
|
| 181 |
+
|
| 182 |
+
numerator = input_heights * (input_delta * theta.pow(2)
|
| 183 |
+
+ input_derivatives * theta_one_minus_theta)
|
| 184 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 185 |
+
* theta_one_minus_theta)
|
| 186 |
+
outputs = input_cumheights + numerator / denominator
|
| 187 |
+
|
| 188 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
| 189 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 190 |
+
+ input_derivatives * (1 - theta).pow(2))
|
| 191 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 192 |
+
|
| 193 |
+
return outputs, logabsdet
|
utils.py
ADDED
|
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import glob
|
| 3 |
+
import sys
|
| 4 |
+
import argparse
|
| 5 |
+
import logging
|
| 6 |
+
import json
|
| 7 |
+
import subprocess
|
| 8 |
+
import numpy as np
|
| 9 |
+
from scipy.io.wavfile import read
|
| 10 |
+
import torch
|
| 11 |
+
import regex as re
|
| 12 |
+
|
| 13 |
+
MATPLOTLIB_FLAG = False
|
| 14 |
+
|
| 15 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
| 16 |
+
logger = logging
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
zh_pattern = re.compile(r'[\u4e00-\u9fa5]')
|
| 21 |
+
en_pattern = re.compile(r'[a-zA-Z]')
|
| 22 |
+
jp_pattern = re.compile(r'[\u3040-\u30ff\u31f0-\u31ff]')
|
| 23 |
+
kr_pattern = re.compile(r'[\uac00-\ud7af\u1100-\u11ff\u3130-\u318f\ua960-\ua97f]')
|
| 24 |
+
num_pattern=re.compile(r'[0-9]')
|
| 25 |
+
comma=r"(?<=[.。!!??;;,,、::'\"‘“”’()()《》「」~——])" #向前匹配但固定长度
|
| 26 |
+
tags={'ZH':'[ZH]','EN':'[EN]','JP':'[JA]','KR':'[KR]'}
|
| 27 |
+
|
| 28 |
+
def tag_cjke(text):
|
| 29 |
+
'''为中英日韩加tag,中日正则分不开,故先分句分离中日再识别,以应对大部分情况'''
|
| 30 |
+
sentences = re.split(r"([.。!!??;;,,、::'\"‘“”’()()【】《》「」~——]+ *(?![0-9]))", text) #分句,排除小数点
|
| 31 |
+
sentences.append("")
|
| 32 |
+
sentences = ["".join(i) for i in zip(sentences[0::2],sentences[1::2])]
|
| 33 |
+
# print(sentences)
|
| 34 |
+
prev_lang=None
|
| 35 |
+
tagged_text = ""
|
| 36 |
+
for s in sentences:
|
| 37 |
+
#全为符号跳过
|
| 38 |
+
nu = re.sub(r'[\s\p{P}]+', '', s, flags=re.U).strip()
|
| 39 |
+
if len(nu)==0:
|
| 40 |
+
continue
|
| 41 |
+
s = re.sub(r'[()()《》「」【】‘“”’]+', '', s)
|
| 42 |
+
jp=re.findall(jp_pattern, s)
|
| 43 |
+
#本句含日语字符判断为日语
|
| 44 |
+
if len(jp)>0:
|
| 45 |
+
prev_lang,tagged_jke=tag_jke(s,prev_lang)
|
| 46 |
+
tagged_text +=tagged_jke
|
| 47 |
+
else:
|
| 48 |
+
prev_lang,tagged_cke=tag_cke(s,prev_lang)
|
| 49 |
+
tagged_text +=tagged_cke
|
| 50 |
+
return tagged_text
|
| 51 |
+
|
| 52 |
+
def tag_jke(text,prev_sentence=None):
|
| 53 |
+
'''为英日韩加tag'''
|
| 54 |
+
# 初始化标记变量
|
| 55 |
+
tagged_text = ""
|
| 56 |
+
prev_lang = None
|
| 57 |
+
tagged=0
|
| 58 |
+
# 遍历文本
|
| 59 |
+
for char in text:
|
| 60 |
+
# 判断当前字符属于哪种语言
|
| 61 |
+
if jp_pattern.match(char):
|
| 62 |
+
lang = "JP"
|
| 63 |
+
elif zh_pattern.match(char):
|
| 64 |
+
lang = "JP"
|
| 65 |
+
elif kr_pattern.match(char):
|
| 66 |
+
lang = "KR"
|
| 67 |
+
elif en_pattern.match(char):
|
| 68 |
+
lang = "EN"
|
| 69 |
+
# elif num_pattern.match(char):
|
| 70 |
+
# lang = prev_sentence
|
| 71 |
+
else:
|
| 72 |
+
lang = None
|
| 73 |
+
tagged_text += char
|
| 74 |
+
continue
|
| 75 |
+
# 如果当前语言与上一个语言不同,就添加标记
|
| 76 |
+
if lang != prev_lang:
|
| 77 |
+
tagged=1
|
| 78 |
+
if prev_lang==None: # 开头
|
| 79 |
+
tagged_text =tags[lang]+tagged_text
|
| 80 |
+
else:
|
| 81 |
+
tagged_text =tagged_text+tags[prev_lang]+tags[lang]
|
| 82 |
+
|
| 83 |
+
# 重置标记变量
|
| 84 |
+
prev_lang = lang
|
| 85 |
+
|
| 86 |
+
# 添加当前字符到标记文本中
|
| 87 |
+
tagged_text += char
|
| 88 |
+
|
| 89 |
+
# 在最后一个语言的结尾添加对应的标记
|
| 90 |
+
if prev_lang:
|
| 91 |
+
tagged_text += tags[prev_lang]
|
| 92 |
+
if not tagged:
|
| 93 |
+
prev_lang=prev_sentence
|
| 94 |
+
tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang]
|
| 95 |
+
|
| 96 |
+
return prev_lang,tagged_text
|
| 97 |
+
|
| 98 |
+
def tag_cke(text,prev_sentence=None):
|
| 99 |
+
'''为中英韩加tag'''
|
| 100 |
+
# 初始化标记变量
|
| 101 |
+
tagged_text = ""
|
| 102 |
+
prev_lang = None
|
| 103 |
+
# 是否全略过未标签
|
| 104 |
+
tagged=0
|
| 105 |
+
|
| 106 |
+
# 遍历文本
|
| 107 |
+
for char in text:
|
| 108 |
+
# 判断当前字符属于哪种语言
|
| 109 |
+
if zh_pattern.match(char):
|
| 110 |
+
lang = "ZH"
|
| 111 |
+
elif kr_pattern.match(char):
|
| 112 |
+
lang = "KR"
|
| 113 |
+
elif en_pattern.match(char):
|
| 114 |
+
lang = "EN"
|
| 115 |
+
# elif num_pattern.match(char):
|
| 116 |
+
# lang = prev_sentence
|
| 117 |
+
else:
|
| 118 |
+
# 略过
|
| 119 |
+
lang = None
|
| 120 |
+
tagged_text += char
|
| 121 |
+
continue
|
| 122 |
+
|
| 123 |
+
# 如果当前语言与上一个语言不同,添加标记
|
| 124 |
+
if lang != prev_lang:
|
| 125 |
+
tagged=1
|
| 126 |
+
if prev_lang==None: # 开头
|
| 127 |
+
tagged_text =tags[lang]+tagged_text
|
| 128 |
+
else:
|
| 129 |
+
tagged_text =tagged_text+tags[prev_lang]+tags[lang]
|
| 130 |
+
|
| 131 |
+
# 重置标记变量
|
| 132 |
+
prev_lang = lang
|
| 133 |
+
|
| 134 |
+
# 添加当前字符到标记文本中
|
| 135 |
+
tagged_text += char
|
| 136 |
+
|
| 137 |
+
# 在最后一个语言的结尾添加对应的标记
|
| 138 |
+
if prev_lang:
|
| 139 |
+
tagged_text += tags[prev_lang]
|
| 140 |
+
# 未标签则继承上一句标签
|
| 141 |
+
if tagged==0:
|
| 142 |
+
prev_lang=prev_sentence
|
| 143 |
+
tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang]
|
| 144 |
+
return prev_lang,tagged_text
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, drop_speaker_emb=False):
|
| 149 |
+
assert os.path.isfile(checkpoint_path)
|
| 150 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
| 151 |
+
iteration = checkpoint_dict['iteration']
|
| 152 |
+
learning_rate = checkpoint_dict['learning_rate']
|
| 153 |
+
if optimizer is not None:
|
| 154 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
| 155 |
+
saved_state_dict = checkpoint_dict['model']
|
| 156 |
+
if hasattr(model, 'module'):
|
| 157 |
+
state_dict = model.module.state_dict()
|
| 158 |
+
else:
|
| 159 |
+
state_dict = model.state_dict()
|
| 160 |
+
new_state_dict = {}
|
| 161 |
+
for k, v in state_dict.items():
|
| 162 |
+
try:
|
| 163 |
+
if k == 'emb_g.weight':
|
| 164 |
+
if drop_speaker_emb:
|
| 165 |
+
new_state_dict[k] = v
|
| 166 |
+
continue
|
| 167 |
+
v[:saved_state_dict[k].shape[0], :] = saved_state_dict[k]
|
| 168 |
+
new_state_dict[k] = v
|
| 169 |
+
else:
|
| 170 |
+
new_state_dict[k] = saved_state_dict[k]
|
| 171 |
+
except:
|
| 172 |
+
logger.info("%s is not in the checkpoint" % k)
|
| 173 |
+
new_state_dict[k] = v
|
| 174 |
+
if hasattr(model, 'module'):
|
| 175 |
+
model.module.load_state_dict(new_state_dict)
|
| 176 |
+
else:
|
| 177 |
+
model.load_state_dict(new_state_dict)
|
| 178 |
+
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
| 179 |
+
checkpoint_path, iteration))
|
| 180 |
+
return model, optimizer, learning_rate, iteration
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
| 184 |
+
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
| 185 |
+
iteration, checkpoint_path))
|
| 186 |
+
if hasattr(model, 'module'):
|
| 187 |
+
state_dict = model.module.state_dict()
|
| 188 |
+
else:
|
| 189 |
+
state_dict = model.state_dict()
|
| 190 |
+
torch.save({'model': state_dict,
|
| 191 |
+
'iteration': iteration,
|
| 192 |
+
'optimizer': optimizer.state_dict() if optimizer is not None else None,
|
| 193 |
+
'learning_rate': learning_rate}, checkpoint_path)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
| 197 |
+
for k, v in scalars.items():
|
| 198 |
+
writer.add_scalar(k, v, global_step)
|
| 199 |
+
for k, v in histograms.items():
|
| 200 |
+
writer.add_histogram(k, v, global_step)
|
| 201 |
+
for k, v in images.items():
|
| 202 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
| 203 |
+
for k, v in audios.items():
|
| 204 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def extract_digits(f):
|
| 208 |
+
digits = "".join(filter(str.isdigit, f))
|
| 209 |
+
return int(digits) if digits else -1
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def latest_checkpoint_path(dir_path, regex="G_[0-9]*.pth"):
|
| 213 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
| 214 |
+
f_list.sort(key=lambda f: extract_digits(f))
|
| 215 |
+
x = f_list[-1]
|
| 216 |
+
print(f"latest_checkpoint_path:{x}")
|
| 217 |
+
return x
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def oldest_checkpoint_path(dir_path, regex="G_[0-9]*.pth", preserved=4):
|
| 221 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
| 222 |
+
f_list.sort(key=lambda f: extract_digits(f))
|
| 223 |
+
if len(f_list) > preserved:
|
| 224 |
+
x = f_list[0]
|
| 225 |
+
print(f"oldest_checkpoint_path:{x}")
|
| 226 |
+
return x
|
| 227 |
+
return ""
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
| 231 |
+
global MATPLOTLIB_FLAG
|
| 232 |
+
if not MATPLOTLIB_FLAG:
|
| 233 |
+
import matplotlib
|
| 234 |
+
matplotlib.use("Agg")
|
| 235 |
+
MATPLOTLIB_FLAG = True
|
| 236 |
+
mpl_logger = logging.getLogger('matplotlib')
|
| 237 |
+
mpl_logger.setLevel(logging.WARNING)
|
| 238 |
+
import matplotlib.pylab as plt
|
| 239 |
+
import numpy as np
|
| 240 |
+
|
| 241 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
| 242 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
| 243 |
+
interpolation='none')
|
| 244 |
+
plt.colorbar(im, ax=ax)
|
| 245 |
+
plt.xlabel("Frames")
|
| 246 |
+
plt.ylabel("Channels")
|
| 247 |
+
plt.tight_layout()
|
| 248 |
+
|
| 249 |
+
fig.canvas.draw()
|
| 250 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
| 251 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 252 |
+
plt.close()
|
| 253 |
+
return data
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
| 257 |
+
global MATPLOTLIB_FLAG
|
| 258 |
+
if not MATPLOTLIB_FLAG:
|
| 259 |
+
import matplotlib
|
| 260 |
+
matplotlib.use("Agg")
|
| 261 |
+
MATPLOTLIB_FLAG = True
|
| 262 |
+
mpl_logger = logging.getLogger('matplotlib')
|
| 263 |
+
mpl_logger.setLevel(logging.WARNING)
|
| 264 |
+
import matplotlib.pylab as plt
|
| 265 |
+
import numpy as np
|
| 266 |
+
|
| 267 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
| 268 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
| 269 |
+
interpolation='none')
|
| 270 |
+
fig.colorbar(im, ax=ax)
|
| 271 |
+
xlabel = 'Decoder timestep'
|
| 272 |
+
if info is not None:
|
| 273 |
+
xlabel += '\n\n' + info
|
| 274 |
+
plt.xlabel(xlabel)
|
| 275 |
+
plt.ylabel('Encoder timestep')
|
| 276 |
+
plt.tight_layout()
|
| 277 |
+
|
| 278 |
+
fig.canvas.draw()
|
| 279 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
| 280 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 281 |
+
plt.close()
|
| 282 |
+
return data
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def load_wav_to_torch(full_path):
|
| 286 |
+
sampling_rate, data = read(full_path)
|
| 287 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def load_filepaths_and_text(filename, split="|"):
|
| 291 |
+
with open(filename, encoding='utf-8') as f:
|
| 292 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
| 293 |
+
return filepaths_and_text
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def str2bool(v):
|
| 297 |
+
if isinstance(v, bool):
|
| 298 |
+
return v
|
| 299 |
+
if v.lower() in ('yes', 'true', 't', 'y', '1'):
|
| 300 |
+
return True
|
| 301 |
+
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
|
| 302 |
+
return False
|
| 303 |
+
else:
|
| 304 |
+
raise argparse.ArgumentTypeError('Boolean value expected.')
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def get_hparams(init=True):
|
| 308 |
+
parser = argparse.ArgumentParser()
|
| 309 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/modified_finetune_speaker.json",
|
| 310 |
+
help='JSON file for configuration')
|
| 311 |
+
parser.add_argument('-m', '--model', type=str, default="pretrained_models",
|
| 312 |
+
help='Model name')
|
| 313 |
+
parser.add_argument('-n', '--max_epochs', type=int, default=50,
|
| 314 |
+
help='finetune epochs')
|
| 315 |
+
parser.add_argument('--cont', type=str2bool, default=False, help='whether to continue training on the latest checkpoint')
|
| 316 |
+
parser.add_argument('--drop_speaker_embed', type=str2bool, default=False, help='whether to drop existing characters')
|
| 317 |
+
parser.add_argument('--train_with_pretrained_model', type=str2bool, default=True,
|
| 318 |
+
help='whether to train with pretrained model')
|
| 319 |
+
parser.add_argument('--preserved', type=int, default=4,
|
| 320 |
+
help='Number of preserved models')
|
| 321 |
+
|
| 322 |
+
args = parser.parse_args()
|
| 323 |
+
model_dir = os.path.join("./", args.model)
|
| 324 |
+
|
| 325 |
+
if not os.path.exists(model_dir):
|
| 326 |
+
os.makedirs(model_dir)
|
| 327 |
+
|
| 328 |
+
config_path = args.config
|
| 329 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
| 330 |
+
if init:
|
| 331 |
+
with open(config_path, "r") as f:
|
| 332 |
+
data = f.read()
|
| 333 |
+
with open(config_save_path, "w") as f:
|
| 334 |
+
f.write(data)
|
| 335 |
+
else:
|
| 336 |
+
with open(config_save_path, "r") as f:
|
| 337 |
+
data = f.read()
|
| 338 |
+
config = json.loads(data)
|
| 339 |
+
|
| 340 |
+
hparams = HParams(**config)
|
| 341 |
+
hparams.model_dir = model_dir
|
| 342 |
+
hparams.max_epochs = args.max_epochs
|
| 343 |
+
hparams.cont = args.cont
|
| 344 |
+
hparams.drop_speaker_embed = args.drop_speaker_embed
|
| 345 |
+
hparams.train_with_pretrained_model = args.train_with_pretrained_model
|
| 346 |
+
hparams.preserved = args.preserved
|
| 347 |
+
return hparams
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def get_hparams_from_dir(model_dir):
|
| 351 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
| 352 |
+
with open(config_save_path, "r") as f:
|
| 353 |
+
data = f.read()
|
| 354 |
+
config = json.loads(data)
|
| 355 |
+
|
| 356 |
+
hparams = HParams(**config)
|
| 357 |
+
hparams.model_dir = model_dir
|
| 358 |
+
return hparams
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def get_hparams_from_file(config_path):
|
| 362 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
| 363 |
+
data = f.read()
|
| 364 |
+
config = json.loads(data)
|
| 365 |
+
|
| 366 |
+
hparams = HParams(**config)
|
| 367 |
+
return hparams
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
def check_git_hash(model_dir):
|
| 371 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
| 372 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
| 373 |
+
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
| 374 |
+
source_dir
|
| 375 |
+
))
|
| 376 |
+
return
|
| 377 |
+
|
| 378 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
| 379 |
+
|
| 380 |
+
path = os.path.join(model_dir, "githash")
|
| 381 |
+
if os.path.exists(path):
|
| 382 |
+
saved_hash = open(path).read()
|
| 383 |
+
if saved_hash != cur_hash:
|
| 384 |
+
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
| 385 |
+
saved_hash[:8], cur_hash[:8]))
|
| 386 |
+
else:
|
| 387 |
+
open(path, "w").write(cur_hash)
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def get_logger(model_dir, filename="train.log"):
|
| 391 |
+
global logger
|
| 392 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
| 393 |
+
logger.setLevel(logging.DEBUG)
|
| 394 |
+
|
| 395 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
| 396 |
+
if not os.path.exists(model_dir):
|
| 397 |
+
os.makedirs(model_dir)
|
| 398 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
| 399 |
+
h.setLevel(logging.DEBUG)
|
| 400 |
+
h.setFormatter(formatter)
|
| 401 |
+
logger.addHandler(h)
|
| 402 |
+
return logger
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
class HParams():
|
| 406 |
+
def __init__(self, **kwargs):
|
| 407 |
+
for k, v in kwargs.items():
|
| 408 |
+
if type(v) == dict:
|
| 409 |
+
v = HParams(**v)
|
| 410 |
+
self[k] = v
|
| 411 |
+
|
| 412 |
+
def keys(self):
|
| 413 |
+
return self.__dict__.keys()
|
| 414 |
+
|
| 415 |
+
def items(self):
|
| 416 |
+
return self.__dict__.items()
|
| 417 |
+
|
| 418 |
+
def values(self):
|
| 419 |
+
return self.__dict__.values()
|
| 420 |
+
|
| 421 |
+
def __len__(self):
|
| 422 |
+
return len(self.__dict__)
|
| 423 |
+
|
| 424 |
+
def __getitem__(self, key):
|
| 425 |
+
return getattr(self, key)
|
| 426 |
+
|
| 427 |
+
def __setitem__(self, key, value):
|
| 428 |
+
return setattr(self, key, value)
|
| 429 |
+
|
| 430 |
+
def __contains__(self, key):
|
| 431 |
+
return key in self.__dict__
|
| 432 |
+
|
| 433 |
+
def __repr__(self):
|
| 434 |
+
return self.__dict__.__repr__()
|