Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 12,345 Bytes
ddfcf22 273150e ddfcf22 273150e 92fb448 6c7c415 273150e ddfcf22 af137d0 273150e af137d0 273150e ddfcf22 273150e ddfcf22 273150e ddfcf22 7e2af3a 409a455 ddfcf22 daa3b76 ddfcf22 0b31c6b ddfcf22 23e6d19 ddfcf22 23e6d19 ddfcf22 99c6bf5 ddfcf22 99c6bf5 ddfcf22 2d57e6c 99c6bf5 ddfcf22 99c6bf5 ddfcf22 99c6bf5 ddfcf22 99c6bf5 ddfcf22 273150e ddfcf22 9f5b527 273150e 99c6bf5 710bd2b 273150e 710bd2b 496270e 273150e 2d57e6c 710bd2b 273150e ddfcf22 23e6d19 ddfcf22 2d57e6c ddfcf22 99c6bf5 ddfcf22 2d57e6c 00801f1 2d57e6c ddfcf22 2d57e6c 99c6bf5 2d57e6c 99c6bf5 2d57e6c 99c6bf5 2d57e6c 99c6bf5 2d57e6c ddfcf22 2d57e6c ddfcf22 99c6bf5 2d57e6c ddfcf22 9bc903f ddfcf22 9bc903f ddfcf22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 20 14:23:27 2025
@author: mattc
"""
import os
import cv2
from PIL import Image
def pad(img_np, tw=2048, th=1536):
"""
Pads a numpy image (grayscale or RGB) to 2048x1536 (width x height) with white pixels.
Pads at the bottom and right as needed.
"""
height, width = img_np.shape[:2]
pad_bottom = max(0, th - height)
pad_right = max(0, tw - width)
# Padding: (top, bottom, left, right)
if img_np.ndim == 3:
# Color image (H, W, 3)
border_value = [255, 255, 255]
else:
# Grayscale image (H, W)
border_value = 255
padded = cv2.copyMakeBorder(
img_np,
top=0, bottom=pad_bottom,
left=0, right=pad_right,
borderType=cv2.BORDER_CONSTANT,
value=border_value
)
return padded
#this is the huggingface version
import numpy as np
from PIL import Image
def cut_img(img, patch_size=512):
img_map = {}
width, height = img.size
i_num = height // patch_size
j_num = width // patch_size
count = 1
for i in range(i_num):
for j in range(j_num):
cropped_img = img.crop((
patch_size * j,
patch_size * i,
patch_size * (j + 1),
patch_size * (i + 1)
))
img_map[count] = cropped_img
count += 1
return img_map, i_num, j_num # Return rows and cols for stitching
import numpy as np
import numpy as np
from PIL import Image
def stitch(img_map, i_num, j_num, min_width=2048, min_height=1536):
tiles = []
count = 1
for i in range(i_num):
row_tiles = []
for j in range(j_num):
tile = np.array(img_map[count])
row_tiles.append(tile)
count += 1
row_img = np.hstack(row_tiles)
tiles.append(row_img)
stitched = np.vstack(tiles)
# Pad the stitched image if it's less than min_width/min_height
h, w = stitched.shape[:2]
pad_h = max(0, min_height - h)
pad_w = max(0, min_width - w)
if pad_h > 0 or pad_w > 0:
# Pad as (top, bottom), (left, right), (channels)
if stitched.ndim == 3:
stitched = np.pad(stitched, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
else:
stitched = np.pad(stitched, ((0, pad_h), (0, pad_w)), 'constant')
return stitched
import matplotlib.pyplot as plt
def visualize_segmentation(mask, image=0):
plt.figure(figsize=(10, 5))
if(not np.isscalar(image)):
# Show original image if it is entered
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.axis("off")
# Show segmentation mask
plt.subplot(1, 2, 2)
plt.imshow(mask, cmap="gray") # Show as grayscale
plt.title("Segmentation Mask")
plt.axis("off")
plt.show()
import torch
from transformers import SegformerForSemanticSegmentation
# Load fine-tuned model
#ReyaLabColumbia/Segformer_Colony_Counter
#ReyaLabColumbia/OrganoidCounter
model = SegformerForSemanticSegmentation.from_pretrained("ReyaLabColumbia/Segformer_Organoid_Counter_GP")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval() # Set to evaluation mode
# Load image processor
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
image_processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b3-finetuned-cityscapes-1024-1024")
def preprocess_image(image):
image = image.convert("RGB") # Open and convert to RGB
inputs = image_processor(image, return_tensors="pt") # Preprocess for model
return image, inputs["pixel_values"]
def postprocess_mask(logits):
mask = torch.argmax(logits, dim=1) # Take argmax across the class dimension
return mask.squeeze().cpu().numpy() # Convert to NumPy array
def eval_img(image):
# Load and preprocess image
image, pixel_values = preprocess_image(image)
pixel_values = pixel_values.to(device)
with torch.no_grad(): # No gradient calculation for inference
outputs = model(pixel_values=pixel_values) # Run model
logits = outputs.logits
# Convert logits to segmentation mask
segmentation_mask = postprocess_mask(logits)
#visualize_segmentation(segmentation_mask,image)
segmentation_mask = cv2.resize(segmentation_mask, (512, 512), interpolation=cv2.INTER_LINEAR_EXACT)
return(segmentation_mask)
# for x in img_map:
# mask = eval_img(img_map[x])
# cv2.imwrite(img_map[x], mask)
# del mask,x
# p = stitch(img_map)
# visualize_segmentation(p)
# num_colony = np.count_nonzero(p == 1) # Counts number of 1s
# num_necrosis = np.count_nonzero(p == 2)
# num_necrosis/num_colony
def find_colonies(mask, size_cutoff, circ_cutoff):
binary_mask = np.where(mask == 1, 255, 0).astype(np.uint8)
#print(np.max(binary_mask))
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contoursf = []
for x in contours:
area = cv2.contourArea(x)
if (area < size_cutoff):
continue
perimeter = cv2.arcLength(x, True)
# Avoid division by zero
if perimeter == 0:
continue
# Calculate circularity
circularity = (4 * np.pi * area) / (perimeter ** 2)
if circularity >= circ_cutoff:
contoursf.append(x)
return(contoursf)
def find_necrosis(mask):
binary_mask = np.where(mask == 2, 255, 0).astype(np.uint8)
#print(np.max(binary_mask))
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
return(contours)
# contour_image = np.zeros_like(p)
# contours = find_necrosis(p)
# cv2.drawContours(contour_image, contours, -1, (255), 2)
# visualize_segmentation(contour_image)
import pandas as pd
def compute_centroid(contour):
M = cv2.moments(contour)
if M["m00"] == 0: # Avoid division by zero
return None
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
return (cx, cy)
def contours_overlap_using_mask(contour1, contour2, image_shape=(1536, 2048)):
"""Check if two contours overlap using a bitwise AND mask."""
import numpy as np
import cv2
mask1 = np.zeros(image_shape, dtype=np.uint8)
mask2 = np.zeros(image_shape, dtype=np.uint8)
# Draw each contour as a white shape on its respective mask
cv2.drawContours(mask1, [contour1], -1, 255, thickness=cv2.FILLED)
cv2.drawContours(mask2, [contour2], -1, 255, thickness=cv2.FILLED)
# Compute bitwise AND to find overlapping regions
overlap = cv2.bitwise_and(mask1, mask2)
return np.any(overlap)
def analyze_colonies(mask, size_cutoff, circ_cutoff, img):
colonies = find_colonies(mask, size_cutoff, circ_cutoff)
necrosis = find_necrosis(mask)
data = []
for colony in colonies:
colony_area = cv2.contourArea(colony)
centroid = compute_centroid(colony)
if colony_area <= 50:
continue
mask = np.zeros(img.shape, np.uint8)
cv2.drawContours(mask, [colony], -1, 255, cv2.FILLED)
pix = img[mask == 255]
# Check if any necrosis contour is inside the colony
necrosis_area = 0
nec_list =[]
for nec in necrosis:
# Check if the first point of the necrosis contour is inside the colony
if contours_overlap_using_mask(colony, nec):
nec_area = cv2.contourArea(nec)
necrosis_area += nec_area
nec_list.append(nec)
data.append({
"organoid_area": colony_area,
"necrotic_area": necrosis_area,
"centroid": centroid,
"percent_necrotic": necrosis_area/colony_area,
"contour": colony,
"nec_contours": nec_list,
'mean_pixel_value':np.mean(pix)
})
# Convert results to a DataFrame
df = pd.DataFrame(data)
df.index = range(1,len(df.index)+1)
return(df)
def main(args):
min_size = args[1]
min_circ = args[2]
do_necrosis = args[3]
colonies = {}
img_map, i_num, j_num = cut_img(Image.fromarray(pad(np.array(args[0]),512,512)))
for z in img_map:
img_map[z] = eval_img(img_map[z])
del z
p = stitch(img_map, i_num, j_num)
colonies = analyze_colonies(p, min_size, min_circ, np.array(args[0]))
if len(colonies) <=0:
img = pad(np.array(args[0]))
caption = np.ones((150, 2048, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
cv2.putText(caption, 'No organoids detected.', (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
cv2.imwrite('results.png', np.vstack((img, caption)))
colonies = pd.DataFrame({"organoid_number":[], 'organoid_volume':[], "organoid_area":[],'mean_pixel_value':[], "centroid":[], "necrotic_area":[],"percent_necrotic":[]})
with pd.ExcelWriter('results.xlsx') as writer:
colonies.to_excel(writer, sheet_name="Colony data", index=False)
return(np.vstack((img, caption)), 'results.png', 'results.xlsx')
img =pad(np.array(args[0]))
img = cv2.copyMakeBorder(img,top=0, bottom=10,left=0,right=10, borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
#print(colonies.to_string())
colonies = colonies.sort_values(by=["organoid_area"], ascending=False)
colonies = colonies[colonies["organoid_area"]>= min_size]
colonies.index = range(1,len(colonies.index)+1)
for i in range(len(colonies)):
cv2.drawContours(img, [list(colonies["contour"])[i]], -1, (0, 255, 0), 2)
if do_necrosis == True:
cv2.drawContours(img, list(colonies['nec_contours'])[i], -1, (0, 0, 255), 2)
coords = list(list(colonies["centroid"])[i])
if coords[0] > 1950:
#if a colony is too close to the right edge, makes the label move to left
coords[0] = 1950
cv2.putText(img, str(colonies.index[i]), tuple(coords), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 0), 2)
img = cv2.copyMakeBorder(img,top=10, bottom=0,left=10,right=0, borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
colonies = colonies.drop('contour', axis=1)
colonies = colonies.drop('nec_contours', axis=1)
colonies.insert(loc=0, column="organoid_number", value=[str(x) for x in range(1, len(colonies)+1)])
total_area_dark = sum(colonies['necrotic_area'])
total_area_light = sum(colonies['organoid_area'])
ratio = total_area_dark/(abs(total_area_light)+1)
radii = [np.sqrt(x/3.1415) for x in list(colonies['organoid_area'])]
volumes = [4.189*(x**3) for x in radii]
colonies['organoid_volume'] = volumes
del radii, volumes
meanpix = sum(colonies['mean_pixel_value'] * colonies['organoid_area'])/total_area_light
colonies.loc[len(colonies)+1] = ["Total", total_area_light, total_area_dark, None, ratio, meanpix, sum(colonies['organoid_volume'])]
del meanpix
colonies = colonies[["organoid_number", 'organoid_volume', "organoid_area",'mean_pixel_value', "centroid", "necrotic_area","percent_necrotic"]]
if do_necrosis == False:
colonies = colonies.drop('necrotic_area', axis=1)
colonies = colonies.drop('percent_necrotic', axis=1)
Parameters = pd.DataFrame({"Minimum organoid size in pixels":[min_size], "Minimum organoid circularity":[min_circ]})
with pd.ExcelWriter('results.xlsx') as writer:
colonies.to_excel(writer, sheet_name="Organoid data", index=False)
Parameters.to_excel(writer, sheet_name="Parameters", index=False)
caption = np.ones((150, 2068, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
if do_necrosis == True:
cv2.putText(caption, "Total area necrotic: "+str(total_area_dark)+ ", Total area living: "+str(total_area_light)+", Ratio: "+str(ratio), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
else:
cv2.putText(caption, "Total area: "+str(total_area_light), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
cv2.putText(caption, "Total number of organoids: "+str(len(colonies)-1), (40, 110), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
cv2.imwrite('results.png', np.vstack((img, caption)))
return(np.vstack((img, caption)), 'results.png', 'results.xlsx')
|