Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 17,733 Bytes
284bdef 8c5431e 284bdef 8c5431e 284bdef 8c5431e 284bdef 8c5431e 284bdef 8c5431e 284bdef 70eec14 81441e6 f915ec3 284bdef 9f23ef7 980c50e 284bdef 980c50e 284bdef 980c50e 9f23ef7 284bdef 288ef52 99c6bf5 284bdef 99c6bf5 284bdef 9f23ef7 284bdef 8f635c1 284bdef 8f635c1 284bdef 8f635c1 284bdef 8c5431e 284bdef 8c5431e c902365 284bdef 8f635c1 710bd2b 8c5431e 1476a35 e48ee35 288ef52 2af8199 288ef52 8da9c21 288ef52 8da9c21 284bdef 8c5431e 284bdef fe87e38 284bdef a870016 284bdef a870016 77fd202 284bdef 288ef52 284bdef 288ef52 ee8c803 284bdef 99c6bf5 284bdef 288ef52 00801f1 288ef52 284bdef 288ef52 99c6bf5 288ef52 99c6bf5 288ef52 3f35519 288ef52 99c6bf5 284bdef 288ef52 284bdef 99c6bf5 288ef52 de9b3db ee8c803 284bdef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 20 14:23:27 2025
@author: mattc
"""
import os
import cv2
#this is the huggingface version
from PIL import Image
def pad(img_np, tw=2048, th=1536):
"""
Pads a numpy image (grayscale or RGB) to 2048x1536 (width x height) with white pixels.
Pads at the bottom and right as needed.
"""
height, width = img_np.shape[:2]
pad_bottom = max(0, th - height)
pad_right = max(0, tw - width)
# Padding: (top, bottom, left, right)
if img_np.ndim == 3:
# Color image (H, W, 3)
border_value = [255, 255, 255]
else:
# Grayscale image (H, W)
border_value = 255
padded = cv2.copyMakeBorder(
img_np,
top=0, bottom=pad_bottom,
left=0, right=pad_right,
borderType=cv2.BORDER_CONSTANT,
value=border_value
)
return padded
#this is the huggingface version
import numpy as np
from PIL import Image
def cut_img(img, patch_size=512):
img_map = {}
width, height = img.size
i_num = height // patch_size
j_num = width // patch_size
count = 1
for i in range(i_num):
for j in range(j_num):
cropped_img = img.crop((
patch_size * j,
patch_size * i,
patch_size * (j + 1),
patch_size * (i + 1)
))
img_map[count] = cropped_img
count += 1
return img_map, i_num, j_num # Return rows and cols for stitching
import numpy as np
import numpy as np
from PIL import Image
def stitch(img_map, i_num, j_num, min_width=2048, min_height=1536):
tiles = []
count = 1
for i in range(i_num):
row_tiles = []
for j in range(j_num):
tile = np.array(img_map[count])
row_tiles.append(tile)
count += 1
row_img = np.hstack(row_tiles)
tiles.append(row_img)
stitched = np.vstack(tiles)
# Pad the stitched image if it's less than min_width/min_height
h, w = stitched.shape[:2]
pad_h = max(0, min_height - h)
pad_w = max(0, min_width - w)
if pad_h > 0 or pad_w > 0:
# Pad as (top, bottom), (left, right), (channels)
if stitched.ndim == 3:
stitched = np.pad(stitched, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
else:
stitched = np.pad(stitched, ((0, pad_h), (0, pad_w)), 'constant')
return stitched
from PIL import Image
import matplotlib.pyplot as plt
def visualize_segmentation(mask, image=0):
plt.figure(figsize=(10, 5))
if(not np.isscalar(image)):
# Show original image if it is entered
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.axis("off")
# Show segmentation mask
plt.subplot(1, 2, 2)
plt.imshow(mask, cmap="gray") # Show as grayscale
plt.title("Segmentation Mask")
plt.axis("off")
plt.show()
import torch
from transformers import SegformerForSemanticSegmentation
# Load fine-tuned model
#ReyaLabColumbia/Segformer_Colony_Counter
#ReyaLabColumbia/OrganoidCounter
model = SegformerForSemanticSegmentation.from_pretrained("ReyaLabColumbia/Segformer_Organoid_Counter_GP") # Adjust path
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval() # Set to evaluation mode
# Load image processor
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
image_processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b3-finetuned-cityscapes-1024-1024")
def preprocess_image(image):
image = image.convert("RGB") # Open and convert to RGB
inputs = image_processor(image, return_tensors="pt") # Preprocess for model
return image, inputs["pixel_values"]
def postprocess_mask(logits):
mask = torch.argmax(logits, dim=1) # Take argmax across the class dimension
return mask.squeeze().cpu().numpy() # Convert to NumPy array
def eval_img(image):
# Load and preprocess image
image, pixel_values = preprocess_image(image)
pixel_values = pixel_values.to(device)
with torch.no_grad(): # No gradient calculation for inference
outputs = model(pixel_values=pixel_values) # Run model
logits = outputs.logits
# Convert logits to segmentation mask
segmentation_mask = postprocess_mask(logits)
#visualize_segmentation(segmentation_mask,image)
segmentation_mask = cv2.resize(segmentation_mask, (512, 512), interpolation=cv2.INTER_LINEAR_EXACT)
return(segmentation_mask)
def find_colonies(mask, size_cutoff, circ_cutoff):
binary_mask = np.where(mask == 1, 255, 0).astype(np.uint8)
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contoursf = []
areas = []
for x in contours:
area = cv2.contourArea(x)
if (area < size_cutoff):
continue
perimeter = cv2.arcLength(x, True)
# Avoid division by zero
if perimeter == 0:
continue
# Calculate circularity
circularity = (4 * np.pi * area) / (perimeter ** 2)
if circularity >= circ_cutoff:
contoursf.append(x)
areas.append(area)
return(contoursf, areas)
def find_necrosis(mask):
binary_mask = np.where(mask == 2, 255, 0).astype(np.uint8)
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
return(contours)
# contour_image = np.zeros_like(p)
# contours = find_necrosis(p)
# cv2.drawContours(contour_image, contours, -1, (255), 2)
# visualize_segmentation(contour_image)
import pandas as pd
def compute_centroid(contour):
M = cv2.moments(contour)
if M["m00"] == 0: # Avoid division by zero
return None
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
return (cx, cy)
def contours_overlap_using_mask(contour1, contour2, image_shape=(1536, 2048)):
"""Check if two contours overlap using a bitwise AND mask."""
import numpy as np
import cv2
mask1 = np.zeros(image_shape, dtype=np.uint8)
mask2 = np.zeros(image_shape, dtype=np.uint8)
# Draw each contour as a white shape on its respective mask
cv2.drawContours(mask1, [contour1], -1, 255, thickness=cv2.FILLED)
cv2.drawContours(mask2, [contour2], -1, 255, thickness=cv2.FILLED)
# Compute bitwise AND to find overlapping regions
overlap = cv2.bitwise_and(mask1, mask2)
return np.any(overlap)
def analyze_colonies(mask, size_cutoff, circ_cutoff, img):
colonies,areas = find_colonies(mask, size_cutoff, circ_cutoff)
necrosis = find_necrosis(mask)
data = []
for x in range(len(colonies)):
colony = colonies[x]
colony_area = areas[x]
centroid = compute_centroid(colony)
mask = np.zeros(img.shape, np.uint8)
cv2.drawContours(mask, [colony], -1, 255, cv2.FILLED)
pix = img[mask == 255]
# Check if any necrosis contour is inside the colony
necrosis_area = 0
nec_list =[]
for nec in necrosis:
# Check if the first point of the necrosis contour is inside the colony
if contours_overlap_using_mask(colony, nec):
nec_area = cv2.contourArea(nec)
necrosis_area += nec_area
nec_list.append(nec)
data.append({
"organoid_area": colony_area,
"necrotic_area": necrosis_area,
"centroid": centroid,
"percent_necrotic": necrosis_area/colony_area,
"contour": colony,
"nec_contours": nec_list,
'mean_pixel_value':np.mean(pix)
})
# Convert results to a DataFrame
df = pd.DataFrame(data)
df.index = range(1,len(df.index)+1)
return(df)
def contour_overlap(contour1, contour2, centroid1, centroid2, area1, area2, centroid_thresh=30, area_thresh = .4, img_shape = (1536, 2048)):
"""
Determines the overlap between two contours.
Returns:
0: No overlap
1: Overlap but does not meet strict conditions
2: Overlap >= 80% of the larger contour and centroids are close
"""
# Create blank images
img1 = np.zeros(img_shape, dtype=np.uint8)
img2 = np.zeros(img_shape, dtype=np.uint8)
# Draw filled contours
cv2.drawContours(img1, [contour1], -1, 255, thickness=cv2.FILLED)
cv2.drawContours(img2, [contour2], -1, 255, thickness=cv2.FILLED)
# Compute overlap
intersection = cv2.bitwise_and(img1, img2)
intersection_area = np.count_nonzero(intersection)
if intersection_area == 0:
return 0 # No overlap
# Compute centroid distance
centroid_distance = float(np.sqrt(abs(centroid1[0]-centroid2[0])**2 + abs(centroid1[1]-centroid2[1])**2))
# Check percentage overlap relative to the larger contour
overlap_ratio = intersection_area/max(area1, area2)
if overlap_ratio >= area_thresh and centroid_distance <= centroid_thresh:
if area1 > area2:
return(2)
else:
return(3)
else:
return 1 # Some overlap but not meeting strict criteria
def compare_frames(frame1, frame2, centroid_dist=30, overlap_area=.4):
for i in range(1, len(frame1)+1):
if frame1.loc[i,"exclude"] == True:
continue
for j in range(1, len(frame2)+1):
if frame2.loc[j,"exclude"] == True:
continue
temp = contour_overlap(frame1.loc[i, "contour"], frame2.loc[j, "contour"], frame1.loc[i, "centroid"], frame2.loc[j, "centroid"], frame1.loc[i, "organoid_area"], frame2.loc[j, "organoid_area"],centroid_dist, overlap_area)
if temp ==2:
frame2.loc[j,"exclude"] = True
elif temp ==3:
frame1.loc[i, "exclude"] = True
break
frame1 = frame1[frame1["exclude"]==False]
frame2 = frame2[frame2["exclude"]==False]
df = pd.concat([frame1, frame2], axis=0)
df.index = range(1,len(df.index)+1)
return(df)
def main(args):
min_size = args[1]
min_circ = args[2]
do_necrosis = args[5]
colonies = {}
files = args[0]
for idx,x in enumerate(files):
img_map, i_num, j_num = cut_img(Image.fromarray(pad(np.array(files[idx]),512,512)))
for z in img_map:
img_map[z] = eval_img(img_map[z])
del z
p = stitch(img_map, i_num, j_num)
frame = analyze_colonies(p, min_size, min_circ, np.array(files[idx]))
frame["source"] = idx
frame["exclude"] = False
if isinstance(colonies, dict):
colonies = frame
else:
colonies = compare_frames(frame, colonies, args[3], args[4])
if len(colonies) <=0:
img = pad(np.array(files[0]))
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
caption = np.ones((150, 2048, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
cv2.putText(caption, 'No organoids detected.', (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
cv2.imwrite('results.png', np.vstack((img, caption)))
colonies = pd.DataFrame({"organoid_number":[], 'organoid_volume':[], "organoid_area":[],'mean_pixel_value':[], "centroid":[], "necrotic_area":[],"percent_necrotic":[]})
with pd.ExcelWriter('results.xlsx') as writer:
colonies.to_excel(writer, sheet_name="Organoid data", index=False)
return(np.vstack((img, caption)), 'results.png', 'results.xlsx')
counts = {}
for x in range(len(files)):
counts[x] = list(colonies["source"]).count(x)
best = [x, counts[x]]
del x
for x in counts:
if counts[x] > best[1]:
best[0] = x
best[1] = counts[x]
del x, counts
best = best[0]
img = pad(np.array(files[best]))
for x in range(len(files)):
if x == best:
continue
#mask = np.zeros_like(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY))
mask = np.zeros_like(img)
contours = colonies[colonies["source"]==x]
contours = list(contours["contour"])
cv2.drawContours(mask, contours, -1, 255, thickness=cv2.FILLED)
# Extract all ROIs from the source image at once
src_image = pad(np.array(files[x]))
roi = cv2.bitwise_and(src_image, src_image, mask=mask)
# Paste the extracted regions onto the destination image
#print("ROI Shape:", roi.shape)
#print("img Shape:", img.shape)
#print("mask Shape:", mask.shape)
#print("mask Shape fixed:", mask.shape)
np.copyto(img, roi, where=(mask== 255))
try:
del x, mask, src_image, roi, best, contours
except:
pass
img = cv2.copyMakeBorder(img,top=0, bottom=10,left=0,right=10, borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
colonies = colonies.sort_values(by=["organoid_area"], ascending=False)
colonies = colonies[colonies["organoid_area"]>= min_size]
colonies.index = range(1,len(colonies.index)+1)
#nearby is a boolean list of whether a colony has overlapping colonies. If so, labelling positions change
nearby = [False]*len(colonies)
areas = list(colonies["organoid_area"])
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
for i in range(len(colonies)):
cv2.drawContours(img, [list(colonies["contour"])[i]], -1, (0, 255, 0), 2)
if do_necrosis == True:
cv2.drawContours(img, list(colonies['nec_contours'])[i], -1, (0, 0, 255), 2)
coords = list(list(colonies["centroid"])[i])
if coords[0] > 1950:
#if a colony is too close to the right edge, makes the label move to left
coords[0] = 1950
for j in range(len(colonies)):
if j == i:
continue
coords2 = list(list(colonies["centroid"])[j])
if ((abs(coords[0] - coords2[0]) + abs(coords[1] - coords2[1])) <= 40):
nearby[i] = True
break
if nearby[i] ==True:
#If the colony has nearby colonies, this adjusts the labels so they are smaller and are positioned based on the approximate radius of the colony
# a random number is generated, and based on that, the label is put at the top or bottom, left or right
radius= int(np.sqrt(areas[i]/3.1415)*.9)
n = np.random.random()
if n >.75:
new_x = min(coords[0] + radius, 2000)
new_y = min(coords[1] + radius, 1480)
elif n >.5:
new_x = min(coords[0] + radius, 2000)
new_y = max(coords[1] - radius, 50)
elif n >.25:
new_x = max(coords[0] - radius, 0)
new_y = min(coords[1] + radius, 1480)
else:
new_x = max(coords[0] - radius, 0)
new_y = max(coords[1] - radius, 50)
cv2.putText(img, str(colonies.index[i]), (new_x,new_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
del n, radius, new_x, new_y
else:
cv2.putText(img, str(colonies.index[i]), coords, cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 0), 2)
del nearby, areas
colonies = colonies.drop('contour', axis=1)
colonies = colonies.drop('nec_contours', axis=1)
colonies = colonies.drop('exclude', axis=1)
img = cv2.copyMakeBorder(img,top=10, bottom=0,left=10,right=0, borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
colonies.insert(loc=0, column="organoid_number", value=[str(x) for x in range(1, len(colonies)+1)])
total_area_dark = sum(colonies['necrotic_area'])
total_area_light = sum(colonies['organoid_area'])
ratio = total_area_dark/(abs(total_area_light)+1)
radii = [np.sqrt(x/3.1415) for x in list(colonies['organoid_area'])]
volumes = [4.189*(x**3) for x in radii]
colonies['organoid_volume'] = volumes
del radii, volumes
meanpix = sum(colonies['mean_pixel_value'] * colonies['organoid_area'])/total_area_light
colonies = colonies[["organoid_number", 'organoid_volume', "organoid_area",'mean_pixel_value', "centroid", "necrotic_area","percent_necrotic", "source"]]
colonies.loc[len(colonies)+1] = ["Total", sum(colonies['organoid_volume']), total_area_light, meanpix, None, total_area_dark, ratio, None]
del meanpix
Parameters = pd.DataFrame({"Minimum organoid size in pixels":[min_size], "Minimum organoid circularity":[min_circ]})
if do_necrosis == False:
colonies = colonies.drop('necrotic_area', axis=1)
colonies = colonies.drop('percent_necrotic', axis=1)
with pd.ExcelWriter("Group_analysis_results.xlsx") as writer:
colonies.to_excel(writer, sheet_name="Organoid data", index=False)
Parameters.to_excel(writer, sheet_name="Parameters", index=False)
caption = np.ones((150, 2068, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
if do_necrosis == True:
cv2.putText(caption, "Total area necrotic: "+str(total_area_dark)+ ", Total area living: "+str(total_area_light)+", Ratio: "+str(ratio), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
else:
cv2.putText(caption, "Total area: "+str(total_area_light), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
cv2.putText(caption, "Total number of organoids: "+str(len(colonies)-1), (40, 110), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
print('img ndim: ' +str(img.ndim))
print('caption ndim: ' +str(caption.ndim))
cv2.imwrite('Group_analysis_results.png', np.vstack((img, caption)))
return(np.vstack((img, caption)), 'Group_analysis_results.png', 'Group_analysis_results.xlsx')
|