File size: 17,733 Bytes
284bdef
 
 
 
 
 
 
 
 
 
 
8c5431e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284bdef
 
8c5431e
 
284bdef
 
 
8c5431e
 
 
 
 
 
284bdef
 
8c5431e
284bdef
 
8c5431e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284bdef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70eec14
81441e6
f915ec3
284bdef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f23ef7
980c50e
284bdef
 
 
 
980c50e
 
 
284bdef
980c50e
9f23ef7
 
 
284bdef
 
 
 
 
 
 
 
 
 
 
288ef52
99c6bf5
284bdef
99c6bf5
284bdef
9f23ef7
 
284bdef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f635c1
284bdef
 
 
 
 
 
8f635c1
284bdef
 
 
 
 
 
 
 
 
 
 
 
 
 
8f635c1
284bdef
 
 
8c5431e
284bdef
 
 
8c5431e
c902365
284bdef
 
 
 
 
8f635c1
710bd2b
8c5431e
1476a35
 
e48ee35
288ef52
2af8199
288ef52
8da9c21
288ef52
8da9c21
284bdef
 
 
 
 
 
 
 
 
 
 
8c5431e
284bdef
 
 
fe87e38
 
284bdef
 
 
 
a870016
284bdef
 
a870016
 
 
 
77fd202
284bdef
 
 
 
 
 
288ef52
 
284bdef
 
 
288ef52
ee8c803
 
284bdef
 
99c6bf5
 
284bdef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288ef52
00801f1
288ef52
284bdef
288ef52
99c6bf5
288ef52
99c6bf5
288ef52
 
3f35519
 
288ef52
99c6bf5
 
 
284bdef
288ef52
284bdef
 
99c6bf5
 
 
 
288ef52
de9b3db
 
ee8c803
284bdef
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 20 14:23:27 2025

@author: mattc
"""

import os
import cv2
#this is the huggingface version
from PIL import Image


def pad(img_np, tw=2048, th=1536):
    """
    Pads a numpy image (grayscale or RGB) to 2048x1536 (width x height) with white pixels.
    Pads at the bottom and right as needed.
    """
    height, width = img_np.shape[:2]
    pad_bottom = max(0, th - height)
    pad_right = max(0, tw - width)
    # Padding: (top, bottom, left, right)
    if img_np.ndim == 3:
        # Color image (H, W, 3)
        border_value = [255, 255, 255]
    else:
        # Grayscale image (H, W)
        border_value = 255

    padded = cv2.copyMakeBorder(
        img_np, 
        top=0, bottom=pad_bottom,
        left=0, right=pad_right,
        borderType=cv2.BORDER_CONSTANT,
        value=border_value
    )
    return padded


#this is the huggingface version
import numpy as np
from PIL import Image

def cut_img(img, patch_size=512):
    img_map = {}
    width, height = img.size
    i_num = height // patch_size
    j_num = width // patch_size
    count = 1
    for i in range(i_num):
        for j in range(j_num):
            cropped_img = img.crop((
                patch_size * j,
                patch_size * i,
                patch_size * (j + 1),
                patch_size * (i + 1)
            ))
            img_map[count] = cropped_img
            count += 1
    return img_map, i_num, j_num  # Return rows and cols for stitching    
import numpy as np

import numpy as np
from PIL import Image

def stitch(img_map, i_num, j_num, min_width=2048, min_height=1536):
    tiles = []
    count = 1
    for i in range(i_num):
        row_tiles = []
        for j in range(j_num):
            tile = np.array(img_map[count])
            row_tiles.append(tile)
            count += 1
        row_img = np.hstack(row_tiles)
        tiles.append(row_img)
    stitched = np.vstack(tiles)

    # Pad the stitched image if it's less than min_width/min_height
    h, w = stitched.shape[:2]
    pad_h = max(0, min_height - h)
    pad_w = max(0, min_width - w)
    if pad_h > 0 or pad_w > 0:
        # Pad as (top, bottom), (left, right), (channels)
        if stitched.ndim == 3:
            stitched = np.pad(stitched, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
        else:
            stitched = np.pad(stitched, ((0, pad_h), (0, pad_w)), 'constant')
    return stitched


from PIL import Image


import matplotlib.pyplot as plt

def visualize_segmentation(mask, image=0):
    plt.figure(figsize=(10, 5))

    if(not np.isscalar(image)):
        # Show original image if it is entered
        plt.subplot(1, 2, 1)
        plt.imshow(image)
        plt.title("Original Image")
        plt.axis("off")

    # Show segmentation mask
    plt.subplot(1, 2, 2)
    plt.imshow(mask, cmap="gray")  # Show as grayscale
    plt.title("Segmentation Mask")
    plt.axis("off")

    plt.show()

import torch
from transformers import SegformerForSemanticSegmentation
# Load fine-tuned model
#ReyaLabColumbia/Segformer_Colony_Counter
#ReyaLabColumbia/OrganoidCounter
model = SegformerForSemanticSegmentation.from_pretrained("ReyaLabColumbia/Segformer_Organoid_Counter_GP")  # Adjust path
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()  # Set to evaluation mode

# Load image processor
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
image_processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b3-finetuned-cityscapes-1024-1024")

def preprocess_image(image):
    image = image.convert("RGB")  # Open and convert to RGB
    inputs = image_processor(image, return_tensors="pt")  # Preprocess for model
    return image, inputs["pixel_values"]

def postprocess_mask(logits):
    mask = torch.argmax(logits, dim=1)  # Take argmax across the class dimension
    return mask.squeeze().cpu().numpy()  # Convert to NumPy array


def eval_img(image):
    # Load and preprocess image
    image, pixel_values = preprocess_image(image)
    pixel_values = pixel_values.to(device)
    with torch.no_grad():  # No gradient calculation for inference
        outputs = model(pixel_values=pixel_values)  # Run model
        logits = outputs.logits
    # Convert logits to segmentation mask
    segmentation_mask = postprocess_mask(logits)
    #visualize_segmentation(segmentation_mask,image)
    segmentation_mask = cv2.resize(segmentation_mask, (512, 512), interpolation=cv2.INTER_LINEAR_EXACT)
    return(segmentation_mask)

def find_colonies(mask, size_cutoff, circ_cutoff):
    binary_mask = np.where(mask == 1, 255, 0).astype(np.uint8)
    contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    contoursf = []
    areas = []
    for x in contours:
        area = cv2.contourArea(x)
        if (area < size_cutoff):
            continue
        perimeter = cv2.arcLength(x, True)

        # Avoid division by zero
        if perimeter == 0:
            continue
        
        # Calculate circularity
        circularity = (4 * np.pi * area) / (perimeter ** 2)
        if circularity >= circ_cutoff:
            contoursf.append(x)
            areas.append(area)
    return(contoursf, areas)

def find_necrosis(mask):
    binary_mask = np.where(mask == 2, 255, 0).astype(np.uint8)
    contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    return(contours)

# contour_image = np.zeros_like(p)
# contours =  find_necrosis(p)
# cv2.drawContours(contour_image, contours, -1, (255), 2)
# visualize_segmentation(contour_image)
import pandas as pd
def compute_centroid(contour):
    M = cv2.moments(contour)
    if M["m00"] == 0:  # Avoid division by zero
        return None
    cx = int(M["m10"] / M["m00"])
    cy = int(M["m01"] / M["m00"])
    return (cx, cy)


def contours_overlap_using_mask(contour1, contour2, image_shape=(1536, 2048)):
    """Check if two contours overlap using a bitwise AND mask."""
    import numpy as np
    import cv2
    mask1 = np.zeros(image_shape, dtype=np.uint8)
    mask2 = np.zeros(image_shape, dtype=np.uint8)


    # Draw each contour as a white shape on its respective mask
    cv2.drawContours(mask1, [contour1], -1, 255, thickness=cv2.FILLED)
    cv2.drawContours(mask2, [contour2], -1, 255, thickness=cv2.FILLED)


    # Compute bitwise AND to find overlapping regions
    overlap = cv2.bitwise_and(mask1, mask2)
    
    return np.any(overlap)

def analyze_colonies(mask, size_cutoff, circ_cutoff, img):
    colonies,areas = find_colonies(mask, size_cutoff, circ_cutoff)
    necrosis = find_necrosis(mask)
    
    data = []
    
    for x in range(len(colonies)):
        colony = colonies[x]
        colony_area = areas[x]
        centroid = compute_centroid(colony)
        
        mask = np.zeros(img.shape, np.uint8)
        cv2.drawContours(mask, [colony], -1, 255, cv2.FILLED)
        pix = img[mask == 255]
        # Check if any necrosis contour is inside the colony
        necrosis_area = 0
        nec_list =[]
        for nec in necrosis:
            # Check if the first point of the necrosis contour is inside the colony
            if contours_overlap_using_mask(colony, nec):
                nec_area = cv2.contourArea(nec)
                necrosis_area += nec_area
                nec_list.append(nec)

        data.append({
            "organoid_area": colony_area,
            "necrotic_area": necrosis_area,
            "centroid": centroid,
            "percent_necrotic": necrosis_area/colony_area,
            "contour": colony,
            "nec_contours": nec_list,
            'mean_pixel_value':np.mean(pix)
        })

    # Convert results to a DataFrame
    df = pd.DataFrame(data)
    df.index = range(1,len(df.index)+1)
    return(df)


def contour_overlap(contour1, contour2, centroid1, centroid2, area1, area2, centroid_thresh=30, area_thresh = .4, img_shape = (1536, 2048)):
    """
    Determines the overlap between two contours.
    Returns:
        0: No overlap
        1: Overlap but does not meet strict conditions
        2: Overlap >= 80% of the larger contour and centroids are close
    """
    # Create blank images
    img1 = np.zeros(img_shape, dtype=np.uint8)
    img2 = np.zeros(img_shape, dtype=np.uint8)
    
    # Draw filled contours
    cv2.drawContours(img1, [contour1], -1, 255, thickness=cv2.FILLED)
    cv2.drawContours(img2, [contour2], -1, 255, thickness=cv2.FILLED)
    
    # Compute overlap
    intersection = cv2.bitwise_and(img1, img2)
    intersection_area = np.count_nonzero(intersection)
    
    if intersection_area == 0:
        return 0  # No overlap
    
    # Compute centroid distance
    centroid_distance = float(np.sqrt(abs(centroid1[0]-centroid2[0])**2 + abs(centroid1[1]-centroid2[1])**2))
    # Check percentage overlap relative to the larger contour
    overlap_ratio = intersection_area/max(area1, area2)
    if overlap_ratio >= area_thresh and centroid_distance <= centroid_thresh:
        if area1 > area2:
            return(2)
        else:
            return(3)
    else:
        return 1  # Some overlap but not meeting strict criteria
    
def compare_frames(frame1, frame2, centroid_dist=30, overlap_area=.4):
    for i in range(1, len(frame1)+1):
        if frame1.loc[i,"exclude"] == True:
            continue
        for j in range(1, len(frame2)+1):
            if frame2.loc[j,"exclude"] == True:
                continue
            temp = contour_overlap(frame1.loc[i, "contour"], frame2.loc[j, "contour"], frame1.loc[i, "centroid"], frame2.loc[j, "centroid"], frame1.loc[i, "organoid_area"], frame2.loc[j, "organoid_area"],centroid_dist, overlap_area)
            if temp ==2:
                frame2.loc[j,"exclude"] = True
            elif temp ==3:
                frame1.loc[i, "exclude"] = True
                break
    frame1 = frame1[frame1["exclude"]==False]
    frame2 = frame2[frame2["exclude"]==False]
    df = pd.concat([frame1, frame2], axis=0)
    df.index = range(1,len(df.index)+1) 
    return(df)
    
def main(args):
    min_size = args[1]
    min_circ = args[2]
    do_necrosis = args[5]
    colonies = {}
    files = args[0]
    for idx,x in enumerate(files):
        img_map, i_num, j_num = cut_img(Image.fromarray(pad(np.array(files[idx]),512,512)))
        for z in img_map:
            img_map[z] = eval_img(img_map[z])
        del z
        p = stitch(img_map, i_num, j_num)
        frame = analyze_colonies(p, min_size, min_circ, np.array(files[idx]))
        frame["source"] = idx
        frame["exclude"] = False
        if isinstance(colonies, dict):
            colonies = frame
        else:
           colonies = compare_frames(frame, colonies, args[3], args[4])
    if len(colonies) <=0:
        img = pad(np.array(files[0]))
        if img.ndim == 2:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        caption = np.ones((150, 2048, 3), dtype=np.uint8) * 255  # Multiply by 255 to make it white
        cv2.putText(caption, 'No organoids detected.', (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
        cv2.imwrite('results.png', np.vstack((img, caption)))
        colonies = pd.DataFrame({"organoid_number":[], 'organoid_volume':[], "organoid_area":[],'mean_pixel_value':[], "centroid":[], "necrotic_area":[],"percent_necrotic":[]})
        with pd.ExcelWriter('results.xlsx') as writer:
            colonies.to_excel(writer, sheet_name="Organoid data", index=False)
        return(np.vstack((img, caption)), 'results.png', 'results.xlsx')
    counts = {}
    for x in range(len(files)):
        counts[x] = list(colonies["source"]).count(x)
    best = [x, counts[x]]
    del x
    for x in counts:
        if counts[x] > best[1]:
            best[0] = x
            best[1] = counts[x]
    del x, counts
    best = best[0]
    img = pad(np.array(files[best]))
    for x in range(len(files)):
        if x == best:
            continue
        #mask = np.zeros_like(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY))
        mask = np.zeros_like(img)
        contours = colonies[colonies["source"]==x]
        contours = list(contours["contour"])
        cv2.drawContours(mask, contours, -1, 255, thickness=cv2.FILLED)
        # Extract all ROIs from the source image at once
        src_image = pad(np.array(files[x]))
        roi = cv2.bitwise_and(src_image, src_image, mask=mask)
        # Paste the extracted regions onto the destination image
        #print("ROI Shape:", roi.shape)
        #print("img Shape:", img.shape)
        #print("mask Shape:", mask.shape)
        #print("mask Shape fixed:", mask.shape)    
        np.copyto(img, roi, where=(mask== 255))
    try:
        del x, mask, src_image, roi, best, contours
    except:
        pass
    
    img = cv2.copyMakeBorder(img,top=0, bottom=10,left=0,right=10, borderType=cv2.BORDER_CONSTANT,  value=[255, 255, 255]) 
    colonies = colonies.sort_values(by=["organoid_area"], ascending=False)
    colonies = colonies[colonies["organoid_area"]>= min_size]
    colonies.index = range(1,len(colonies.index)+1) 
    #nearby is a boolean list of whether a colony has overlapping colonies. If so, labelling positions change
    nearby = [False]*len(colonies)
    areas = list(colonies["organoid_area"])
    if img.ndim == 2:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    for i in range(len(colonies)): 
        cv2.drawContours(img, [list(colonies["contour"])[i]], -1, (0, 255, 0), 2)
        if do_necrosis == True:
            cv2.drawContours(img, list(colonies['nec_contours'])[i], -1, (0, 0, 255), 2)
        coords = list(list(colonies["centroid"])[i])
        if coords[0] > 1950:
            #if a colony is too close to the right edge, makes the label move to left
            coords[0] = 1950
        for j in range(len(colonies)):
            if j == i:
                continue
            coords2 = list(list(colonies["centroid"])[j])
            if ((abs(coords[0] - coords2[0]) + abs(coords[1] - coords2[1])) <=  40):
                nearby[i] = True
                break
        if nearby[i] ==True:
            #If the colony has nearby colonies, this adjusts the labels so they are smaller and are positioned based on the approximate radius of the colony
            # a random number is generated, and based on that, the label is put at the top or bottom, left or right
            radius= int(np.sqrt(areas[i]/3.1415)*.9)
            n = np.random.random()
            if n >.75:
                new_x = min(coords[0] + radius, 2000)
                new_y = min(coords[1] + radius, 1480)
            elif n >.5:
                new_x = min(coords[0] + radius, 2000)
                new_y = max(coords[1] - radius, 50)
            elif n >.25:
                new_x = max(coords[0] - radius, 0)
                new_y = min(coords[1] + radius, 1480)
            else:
                new_x = max(coords[0] - radius, 0)
                new_y = max(coords[1] - radius, 50)
            cv2.putText(img, str(colonies.index[i]), (new_x,new_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
            del n, radius, new_x, new_y
        else:
            cv2.putText(img, str(colonies.index[i]), coords, cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 0), 2)
    del nearby, areas
    colonies = colonies.drop('contour', axis=1)
    colonies = colonies.drop('nec_contours', axis=1)
    colonies = colonies.drop('exclude', axis=1)
    img = cv2.copyMakeBorder(img,top=10, bottom=0,left=10,right=0, borderType=cv2.BORDER_CONSTANT,  value=[255, 255, 255]) 
    
    colonies.insert(loc=0, column="organoid_number", value=[str(x) for x in range(1, len(colonies)+1)])
    total_area_dark = sum(colonies['necrotic_area'])
    total_area_light = sum(colonies['organoid_area'])
    ratio = total_area_dark/(abs(total_area_light)+1)
    radii = [np.sqrt(x/3.1415) for x in list(colonies['organoid_area'])]
    volumes = [4.189*(x**3) for x in radii]
    colonies['organoid_volume'] = volumes
    del radii, volumes
    meanpix = sum(colonies['mean_pixel_value'] * colonies['organoid_area'])/total_area_light
    colonies = colonies[["organoid_number", 'organoid_volume', "organoid_area",'mean_pixel_value', "centroid", "necrotic_area","percent_necrotic", "source"]]
    colonies.loc[len(colonies)+1] = ["Total", sum(colonies['organoid_volume']), total_area_light, meanpix, None, total_area_dark, ratio, None]
    del meanpix
    Parameters = pd.DataFrame({"Minimum organoid size in pixels":[min_size], "Minimum organoid circularity":[min_circ]})
    if do_necrosis == False:
        colonies = colonies.drop('necrotic_area', axis=1)
        colonies = colonies.drop('percent_necrotic', axis=1)
    with pd.ExcelWriter("Group_analysis_results.xlsx") as writer:
        colonies.to_excel(writer, sheet_name="Organoid data", index=False)
        Parameters.to_excel(writer, sheet_name="Parameters", index=False)
    caption = np.ones((150, 2068, 3), dtype=np.uint8) * 255  # Multiply by 255 to make it white
    if do_necrosis == True:
        cv2.putText(caption, "Total area necrotic: "+str(total_area_dark)+ ", Total area living: "+str(total_area_light)+", Ratio: "+str(ratio), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
    else:
        cv2.putText(caption, "Total area: "+str(total_area_light), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
    cv2.putText(caption, "Total number of organoids: "+str(len(colonies)-1), (40, 110), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)    
    print('img ndim: ' +str(img.ndim))
    print('caption ndim: ' +str(caption.ndim))

    cv2.imwrite('Group_analysis_results.png', np.vstack((img, caption)))
    return(np.vstack((img, caption)), 'Group_analysis_results.png', 'Group_analysis_results.xlsx')