FND / app.py
Rifky's picture
Update app.py
c95dd80
raw
history blame
4.18 kB
import streamlit as st
import numpy as np
import pandas as pd
import re
import time
import os
from transformers import AutoModelForSequenceClassification, AutoModel, AutoTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from Scraper import Scrap
model_checkpoint = "Rifky/indobert-hoax-classification"
base_model_checkpoint = "indobenchmark/indobert-base-p1"
data_checkpoint = "Rifky/indonesian-hoax-news"
label = {0: "valid", 1: "fake"}
@st.cache(show_spinner=False, allow_output_mutation=True)
def load_model():
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
base_model = SentenceTransformer(base_model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, fast=True)
data = load_dataset(data_checkpoint, split="train", download_mode='force_redownload')
return model, base_model, tokenizer, data
def sigmoid(x):
return 1 / (1 + np.exp(-x))
with st.spinner("Loading Model..."):
model, base_model, tokenizer, data = load_model()
st.markdown("""<h1 style="text-align:center;">Fake News Detection AI</h1>""", unsafe_allow_html=True)
user_input = st.text_input("Article URL")
m = st.markdown("""
<style>
div.stButton > button:first-child {
margin: auto;
display: block;
width: 100%;
}
</style>""", unsafe_allow_html=True)
submit = st.button("submit")
if submit:
last_time = time.time()
with st.spinner("Reading Article..."):
scrap = Scrap(user_input)
title, text = scrap.title, scrap.text
if text:
text = re.sub(r'\n', ' ', text)
with st.spinner("Computing..."):
token = text.split()
text_len = len(token)
sequences = []
for i in range(text_len // 512):
sequences.append(" ".join(token[i * 512: (i + 1) * 512]))
sequences.append(" ".join(token[text_len - (text_len % 512) : text_len]))
sequences = tokenizer(sequences, max_length=512, truncation=True, padding="max_length", return_tensors='pt')
predictions = model(**sequences)[0].detach().numpy()
result = [
np.sum([sigmoid(i[0]) for i in predictions]) / len(predictions),
np.sum([sigmoid(i[1]) for i in predictions]) / len(predictions)
]
print (f'\nresult: {result}')
title_embeddings = base_model.encode(title)
similarity_score = cosine_similarity(
[title_embeddings],
data["embeddings"]
).flatten()
sorted = np.argsort(similarity_score)[::-1].tolist()
prediction = np.argmax(result, axis=-1)
if prediction == 0:
st.markdown(f"""<p style="background-color: rgb(254, 242, 242);
color: rgb(153, 27, 27);
font-size: 20px;
border-radius: 7px;
padding-left: 12px;
padding-top: 15px;
padding-bottom: 15px;
line-height: 25px;
text-align: center;">This article is <b>{label[prediction]}</b>.</p>""", unsafe_allow_html=True)
else:
st.markdown(f"""<p style="background-color: rgb(236, 253, 245);
color: rgb(6, 95, 70);
font-size: 20px;
border-radius: 7px;
padding-left: 12px;
padding-top: 15px;
padding-bottom: 15px;
line-height: 25px;
text-align: center;">This article is <b>{label[prediction]}</b>.</p>""", unsafe_allow_html=True)
with st.expander("Related Articles"):
for i in sorted[:5]:
# st.write(f"""""",unsafe_allow_html=True)
st.markdown(f"""
<small style="text-align: left;">{data["url"][i].split("/")[2]}</small><br>
<a href={data["url"][i]} style="text-align: left;">{data["title"][i]}</a>
""", unsafe_allow_html=True)