File size: 32,885 Bytes
4258b21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
from functools import partial
import math
from typing import Iterable
# from black import diff
from torch import nn, einsum
import numpy as np
import torch as th
import torch.nn as nn
import functools
import torch.nn.functional as F
from mmcv.cnn import (build_conv_layer, build_norm_layer, build_upsample_layer,
constant_init, normal_init)
from typing import Optional, Union, Tuple, List, Callable, Dict
import math
from einops import rearrange, repeat
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from einops import rearrange
import copy
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from .position_encoding import PositionEmbeddingSine
# import fvcore.nn.weight_init as weight_init
coco_category_list_check_person = [
"arm",
'person',
"man",
"woman",
"child",
"boy",
"girl",
"teenager"
]
VOC_category_list_check = {
'aeroplane':['aerop','lane'],
'bicycle':['bicycle'],
'bird':['bird'],
'boat':['boat'],
'bottle':['bottle'],
'bus':['bus'],
'car':['car'],
'cat':['cat'],
'chair':['chair'],
'cow':['cow'],
'diningtable':['table'],
'dog':['dog'],
'horse':['horse'],
'motorbike':['motorbike'],
'person':coco_category_list_check_person,
'pottedplant':['pot','plant','ted'],
'sheep':['sheep'],
'sofa':['sofa'],
'train':['train'],
'tvmonitor':['monitor','tv','monitor']
}
class SelfAttentionLayer(nn.Module):
def __init__(self, d_model, nhead, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
q = k = self.with_pos_embed(tgt, query_pos)
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
tgt = self.norm(tgt)
return tgt
def forward_pre(self, tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
tgt2 = self.norm(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(tgt, tgt_mask,
tgt_key_padding_mask, query_pos)
return self.forward_post(tgt, tgt_mask,
tgt_key_padding_mask, query_pos)
class CrossAttentionLayer(nn.Module):
def __init__(self, d_model, nhead, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt, memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
tgt = self.norm(tgt)
return tgt
def forward_pre(self, tgt, memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
tgt2 = self.norm(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, tgt, memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(tgt, memory, memory_mask,
memory_key_padding_mask, pos, query_pos)
return self.forward_post(tgt, memory, memory_mask,
memory_key_padding_mask, pos, query_pos)
class FFNLayer(nn.Module):
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm = nn.LayerNorm(d_model)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt):
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout(tgt2)
tgt = self.norm(tgt)
return tgt
def forward_pre(self, tgt):
tgt2 = self.norm(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, tgt):
if self.normalize_before:
return self.forward_pre(tgt)
return self.forward_post(tgt)
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
class MLP(nn.Module):
""" Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
def resize_fn(img, size):
return transforms.Resize(size, InterpolationMode.BICUBIC)(
transforms.ToPILImage()(img))
import math
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class TransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
def forward(self, tgt, memory, pos = None, query_pos = None):
output = tgt
for layer in self.layers:
output = layer(output, memory, pos=pos, query_pos=query_pos)
return output
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, no_norm = False,
activation="relu"):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, bias=False)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, bias=False)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model) if not no_norm else nn.Identity()
self.norm2 = nn.LayerNorm(d_model) if not no_norm else nn.Identity()
self.norm3 = nn.LayerNorm(d_model) if not no_norm else nn.Identity()
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward(self, tgt, memory, pos = None, query_pos = None):
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
# print(tgt2.shape)
tgt2 = self.self_attn(q, k, value=tgt2)[0]
tgt = tgt + self.dropout1(tgt2)
tgt2 = self.norm2(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory)[0]
tgt = tgt + self.dropout2(tgt2)
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
# Projection of x onto y
def proj(x, y):
return torch.mm(y, x.t()) * y / torch.mm(y, y.t())
# Orthogonalize x wrt list of vectors ys
def gram_schmidt(x, ys):
for y in ys:
x = x - proj(x, y)
return x
def power_iteration(W, u_, update=True, eps=1e-12):
# Lists holding singular vectors and values
us, vs, svs = [], [], []
for i, u in enumerate(u_):
# Run one step of the power iteration
with torch.no_grad():
v = torch.matmul(u, W)
# Run Gram-Schmidt to subtract components of all other singular vectors
v = F.normalize(gram_schmidt(v, vs), eps=eps)
# Add to the list
vs += [v]
# Update the other singular vector
u = torch.matmul(v, W.t())
# Run Gram-Schmidt to subtract components of all other singular vectors
u = F.normalize(gram_schmidt(u, us), eps=eps)
# Add to the list
us += [u]
if update:
u_[i][:] = u
# Compute this singular value and add it to the list
svs += [torch.squeeze(torch.matmul(torch.matmul(v, W.t()), u.t()))]
#svs += [torch.sum(F.linear(u, W.transpose(0, 1)) * v)]
return svs, us, vs
# Spectral normalization base class
class SN(object):
def __init__(self, num_svs, num_itrs, num_outputs, transpose=False, eps=1e-12):
# Number of power iterations per step
self.num_itrs = num_itrs
# Number of singular values
self.num_svs = num_svs
# Transposed?
self.transpose = transpose
# Epsilon value for avoiding divide-by-0
self.eps = eps
# Register a singular vector for each sv
for i in range(self.num_svs):
self.register_buffer('u%d' % i, torch.randn(1, num_outputs))
self.register_buffer('sv%d' % i, torch.ones(1))
# Singular vectors (u side)
@property
def u(self):
return [getattr(self, 'u%d' % i) for i in range(self.num_svs)]
# Singular values;
# note that these buffers are just for logging and are not used in training.
@property
def sv(self):
return [getattr(self, 'sv%d' % i) for i in range(self.num_svs)]
# Compute the spectrally-normalized weight
def W_(self):
W_mat = self.weight.view(self.weight.size(0), -1)
if self.transpose:
W_mat = W_mat.t()
# Apply num_itrs power iterations
for _ in range(self.num_itrs):
svs, us, vs = power_iteration(W_mat, self.u, update=self.training, eps=self.eps)
# Update the svs
if self.training:
with torch.no_grad(): # Make sure to do this in a no_grad() context or you'll get memory leaks!
for i, sv in enumerate(svs):
self.sv[i][:] = sv
return self.weight / svs[0]
# Linear layer with spectral norm
class SNLinear(nn.Linear, SN):
def __init__(self, in_features, out_features, bias=True,
num_svs=1, num_itrs=1, eps=1e-12):
nn.Linear.__init__(self, in_features, out_features, bias)
SN.__init__(self, num_svs, num_itrs, out_features, eps=eps)
def forward(self, x):
return F.linear(x, self.W_(), self.bias)
# 2D Conv layer with spectral norm
class SNConv2d(nn.Conv2d, SN):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True,
num_svs=1, num_itrs=1, eps=1e-12):
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
SN.__init__(self, num_svs, num_itrs, out_channels, eps=eps)
def forward(self, x):
return F.conv2d(x, self.W_(), self.bias, self.stride,
self.padding, self.dilation, self.groups)
class SegBlock(nn.Module):
def __init__(self, in_channels, out_channels, con_channels,
which_conv=nn.Conv2d, which_linear=None, activation=None,
upsample=None):
super(SegBlock, self).__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.which_conv, self.which_linear = which_conv, which_linear
self.activation = activation
self.upsample = upsample
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
self.learnable_sc = in_channels != out_channels or upsample
if self.learnable_sc:
self.conv_sc = self.which_conv(in_channels, out_channels,
kernel_size=1, padding=0)
self.register_buffer('stored_mean1', torch.zeros(in_channels))
self.register_buffer('stored_var1', torch.ones(in_channels))
self.register_buffer('stored_mean2', torch.zeros(out_channels))
self.register_buffer('stored_var2', torch.ones(out_channels))
self.upsample = upsample
def forward(self, x, y=None):
x = F.batch_norm(x, self.stored_mean1, self.stored_var1, None, None,
self.training, 0.1, 1e-4)
h = self.activation(x)
if self.upsample:
h = self.upsample(h)
x = self.upsample(x)
h = self.conv1(h)
h = F.batch_norm(h, self.stored_mean2, self.stored_var2, None, None,
self.training, 0.1, 1e-4)
h = self.activation(h)
h = self.conv2(h)
if self.learnable_sc:
x = self.conv_sc(x)
return h + x
def make_coord(shape, ranges=None, flatten=True):
""" Make coordinates at grid centers.
"""
coord_seqs = []
for i, n in enumerate(shape):
if ranges is None:
v0, v1 = -1, 1
else:
v0, v1 = ranges[i]
r = (v1 - v0) / (2 * n)
seq = v0 + r + (2 * r) * torch.arange(n).float()
coord_seqs.append(seq)
ret = torch.stack(torch.meshgrid(*coord_seqs), dim=-1)
if flatten:
ret = ret.view(-1, ret.shape[-1])
return ret
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x : x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs).double()
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x.double() * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, i=0):
if i == -1:
return nn.Identity(), 3
embed_kwargs = {
'include_input' : False,
'input_dims' : 2,
'max_freq_log2' : multires-1,
'num_freqs' : multires,
'log_sampling' : True,
'periodic_fns' : [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj : eo.embed(x)
return embed, embedder_obj.out_dim
def aggregate_attention(attention_store, res: int, from_where: List[str], is_cross: bool, select: int, prompts=None):
out = []
attention_maps = attention_store.get_average_attention()
num_pixels = res ** 2
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if item.shape[1] == num_pixels:
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])
# print(cross_maps.shape)
out.append(cross_maps)
out = torch.cat(out, dim=1)
# print(out.shape)
return out
class seg_decorder(nn.Module):
def __init__(self,
embedding_dim=512,
num_heads=8,
num_layers=3,
dropout_rate=0,
num_queries=100,
hidden_dim=256,
num_classes=19,
mask_dim= 256,
dim_feedforward= 2048):
super().__init__()
self.num_queries = num_queries
# learnable query features
self.query_feat = nn.Embedding(num_queries, hidden_dim)
# learnable query p.e.
self.query_embed = nn.Embedding(num_queries, hidden_dim)
self.query_feat_mlp = nn.Linear(hidden_dim+768, hidden_dim, bias=False)
self.query_embed_mlp = nn.Linear(hidden_dim+768, hidden_dim, bias=False)
self.decoder_norm = nn.LayerNorm(hidden_dim)
# positional encoding
N_steps = hidden_dim // 2
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
# level embedding (we always use 3 scales)
self.num_feature_levels = 3
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
self.input_proj = nn.ModuleList()
for _ in range(self.num_feature_levels):
self.input_proj.append(nn.Sequential())
# output FFNs
self.mask_classification = True
if self.mask_classification:
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
# define Transformer decoder here
self.num_heads = 8
self.num_layers = 10
self.transformer_self_attention_layers = nn.ModuleList()
self.transformer_cross_attention_layers = nn.ModuleList()
self.transformer_ffn_layers = nn.ModuleList()
pre_norm = False
for _ in range(self.num_layers):
self.transformer_self_attention_layers.append(
SelfAttentionLayer(
d_model=hidden_dim,
nhead=self.num_heads,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.transformer_cross_attention_layers.append(
CrossAttentionLayer(
d_model=hidden_dim,
nhead=self.num_heads,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.transformer_ffn_layers.append(
FFNLayer(
d_model=hidden_dim,
dim_feedforward=dim_feedforward,
dropout=0.0,
normalize_before=False,
)
)
low_feature_channel = 256
mid_feature_channel = 256
high_feature_channel = 256
highest_feature_channel=256
self.low_feature_conv = nn.Sequential(
nn.Conv2d(1280*14+8*77, low_feature_channel, kernel_size=1, bias=False),
)
self.mid_feature_conv = nn.Sequential(
nn.Conv2d(16640+40*77, mid_feature_channel, kernel_size=1, bias=False),
)
self.mid_feature_mix_conv = SegBlock(
in_channels=low_feature_channel+mid_feature_channel,
out_channels=mask_dim,
con_channels=128,
which_conv=functools.partial(SNConv2d,
kernel_size=3, padding=1,
num_svs=1, num_itrs=1,
eps=1e-04),
which_linear=functools.partial(SNLinear,
num_svs=1, num_itrs=1,
eps=1e-04),
activation=nn.ReLU(inplace=True),
upsample=False,
)
self.high_feature_conv = nn.Sequential(
nn.Conv2d(9600+40*77, high_feature_channel, kernel_size=1, bias=False),
)
self.high_feature_mix_conv = SegBlock(
in_channels=mask_dim+high_feature_channel,
out_channels=mask_dim,
con_channels=128,
which_conv=functools.partial(SNConv2d,
kernel_size=3, padding=1,
num_svs=1, num_itrs=1,
eps=1e-04),
which_linear=functools.partial(SNLinear,
num_svs=1, num_itrs=1,
eps=1e-04),
activation=nn.ReLU(inplace=True),
upsample=False,
)
self.highest_feature_conv = nn.Sequential(
nn.Conv2d((640+320*6)*2+40*77, highest_feature_channel, kernel_size=1, bias=False),
)
self.highest_feature_mix_conv = SegBlock(
in_channels=mask_dim+highest_feature_channel,
out_channels=mask_dim,
con_channels=128,
which_conv=functools.partial(SNConv2d,
kernel_size=3, padding=1,
num_svs=1, num_itrs=1,
eps=1e-04),
which_linear=functools.partial(SNLinear,
num_svs=1, num_itrs=1,
eps=1e-04),
activation=nn.ReLU(inplace=True),
upsample=False,
)
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size):
decoder_output = self.decoder_norm(output)
decoder_output = decoder_output.transpose(0, 1)
outputs_class = self.class_embed(decoder_output)
mask_embed = self.mask_embed(decoder_output)
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
# NOTE: prediction is of higher-resolution
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
# must use bool type
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
attn_mask = attn_mask.detach()
return outputs_class, outputs_mask, attn_mask
def forward(self,diffusion_features,controller,prompts,tokenizer):
x, mask_features=self._prepare_features(diffusion_features,controller,prompts,tokenizer)
b=mask_features.size()[0]
src = []
pos = []
size_list = []
# x
# [b, 256, 20, 20]
# [b, 256, 40, 40]
# [b, 256, 80, 80]
for i in range(self.num_feature_levels):
size_list.append(x[i].shape[-2:])
pos.append(self.pe_layer(x[i], None).flatten(2))
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
# flatten NxCxHxW to HWxNxC
pos[-1] = pos[-1].permute(2, 0, 1)
src[-1] = src[-1].permute(2, 0, 1)
# QxNxC
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, b, 1)
output = self.query_feat.weight.unsqueeze(1).repeat(1, b, 1)
# B, L, D
predictions_class = []
predictions_mask = []
# prediction heads on learnable query features
outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0])
predictions_class.append(outputs_class)
predictions_mask.append(outputs_mask)
for i in range(self.num_layers):
level_index = i % self.num_feature_levels
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
# attention: cross-attention first
output = self.transformer_cross_attention_layers[i](
output, src[level_index],
memory_mask=attn_mask,
memory_key_padding_mask=None, # here we do not apply masking on padded region
pos=pos[level_index], query_pos=query_embed
)
output = self.transformer_self_attention_layers[i](
output, tgt_mask=None,
tgt_key_padding_mask=None,
query_pos=query_embed
)
# FFN
output = self.transformer_ffn_layers[i](
output
)
outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels])
predictions_class.append(outputs_class)
predictions_mask.append(outputs_mask)
assert len(predictions_class) == self.num_layers + 1
out = {
'pred_logits': predictions_class[-1],
'pred_masks': predictions_mask[-1]
}
return out
def _prepare_features(self, features, attention_store,prompts,tokenizer, upsample='bilinear'):
self.low_feature_size = 16
self.mid_feature_size = 32
self.high_feature_size = 64
self.final_high_feature_size = 160
low_features = [
F.interpolate(i, size=self.low_feature_size, mode=upsample, align_corners=False) for i in features["low"]
]
low_features = torch.cat(low_features, dim=1)
mid_features = [
F.interpolate(i, size=self.mid_feature_size, mode=upsample, align_corners=False) for i in features["mid"]
]
mid_features = torch.cat(mid_features, dim=1)
high_features = [
F.interpolate(i, size=self.high_feature_size, mode=upsample, align_corners=False) for i in features["high"]
]
high_features = torch.cat(high_features, dim=1)
highest_features=torch.cat(features["highest"],dim=1)
## Attention map
from_where=("up", "down")
select = 0
# "up", "down"
attention_maps_8s = aggregate_attention(attention_store, 8, ("up", "mid", "down"), True, select,prompts=prompts)
attention_maps_16s = aggregate_attention(attention_store, 16, from_where, True, select,prompts=prompts)
attention_maps_32 = aggregate_attention(attention_store, 32, from_where, True, select,prompts=prompts)
attention_maps_64 = aggregate_attention(attention_store, 64, from_where, True, select,prompts=prompts)
attention_maps_8s = rearrange(attention_maps_8s, 'b c h w d-> b (c d) h w')
attention_maps_16s = rearrange(attention_maps_16s, 'b c h w d-> b (c d) h w')
attention_maps_32 = rearrange(attention_maps_32, 'b c h w d-> b (c d) h w')
attention_maps_64 = rearrange(attention_maps_64, 'b c h w d-> b (c d) h w')
attention_maps_8s = F.interpolate(attention_maps_8s, size=self.low_feature_size, mode=upsample, align_corners=False)
attention_maps_16s = F.interpolate(attention_maps_16s, size=self.mid_feature_size, mode=upsample, align_corners=False)
attention_maps_32 = F.interpolate(attention_maps_32, size=self.high_feature_size, mode=upsample, align_corners=False)
features_dict = {
'low': torch.cat([low_features, attention_maps_8s], dim=1) ,
'mid': torch.cat([mid_features, attention_maps_16s], dim=1) ,
'high': torch.cat([high_features, attention_maps_32], dim=1) ,
'highest':torch.cat([highest_features, attention_maps_64], dim=1) ,
}
low_feat = self.low_feature_conv(features_dict['low'])
low_feat = F.interpolate(low_feat, size=self.mid_feature_size, mode='bilinear', align_corners=False)
mid_feat = self.mid_feature_conv(features_dict['mid'])
mid_feat = torch.cat([low_feat, mid_feat], dim=1)
mid_feat = self.mid_feature_mix_conv(mid_feat, y=None)
mid_feat = F.interpolate(mid_feat, size=self.high_feature_size, mode='bilinear', align_corners=False)
high_feat = self.high_feature_conv(features_dict['high'])
high_feat = torch.cat([mid_feat, high_feat], dim=1)
high_feat = self.high_feature_mix_conv(high_feat, y=None)
highest_feat=self.highest_feature_conv(features_dict['highest'])
highest_feat=torch.cat([high_feat,highest_feat],dim=1)
highest_feat=self.highest_feature_mix_conv(highest_feat,y=None)
highest_feat = F.interpolate(highest_feat, size=self.final_high_feature_size, mode='bilinear', align_corners=False)
low_feat = F.interpolate(low_feat, size=20, mode='bilinear', align_corners=False)
mid_feat = F.interpolate(mid_feat, size=40, mode='bilinear', align_corners=False)
high_feat = F.interpolate(high_feat, size=80, mode='bilinear', align_corners=False)
return [low_feat,mid_feat,high_feat], highest_feat
|