File size: 3,347 Bytes
4258b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import abc
from distutils.version import LooseVersion
import torch.nn.functional as F
LOW_RESOURCE = False 

def cross_entropy2d(input, target, weight=None, size_average=True):
    n, c, h, w = input.size()
    if LooseVersion(torch.__version__) < LooseVersion('0.3'):
        log_p = F.log_softmax(input)
    else:
        log_p = F.log_softmax(input, dim=1)
    log_p = log_p.transpose(1, 2).transpose(2, 3).contiguous()
    log_p = log_p[target.view(n, h, w, 1).repeat(1, 1, 1, c) >= 0]
    log_p = log_p.view(-1, c)
    mask = target >= 0
    target = target[mask]
    loss = F.nll_loss(log_p, target, weight=weight, reduction='sum')
    if size_average:
        loss /= mask.data.sum()
    return loss

class AttentionControl(abc.ABC):
    def step_callback(self, x_t):
        return x_t
    
    def between_steps(self):
        return
    
    @property
    def num_uncond_att_layers(self):
        return self.num_att_layers if LOW_RESOURCE else 0
    
    @abc.abstractmethod
    def forward (self, attn, is_cross: bool, place_in_unet: str):
        raise NotImplementedError

    def __call__(self, attn, is_cross: bool, place_in_unet: str):
        
        if self.cur_att_layer >= self.num_uncond_att_layers:
            if LOW_RESOURCE:
                attn = self.forward(attn, is_cross, place_in_unet)
            else:
                h = attn.shape[0]
                attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
        self.cur_att_layer += 1
        if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
            self.cur_att_layer = 0
            if self.activate:
                self.cur_step += 1
            self.between_steps()
        return attn
    
    def reset(self):
        self.cur_step = 0
        self.cur_att_layer = 0

    def __init__(self):
        self.cur_step = 0
        self.num_att_layers = -1
        self.cur_att_layer = 0

class AttentionStore(AttentionControl):

    @staticmethod
    def get_empty_store():
        return {"down_cross": [], "mid_cross": [], "up_cross": [],
                "down_self": [],  "mid_self": [],  "up_self": []}

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        if self.activate:
            key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
            self.step_store[key].append(attn)
        return attn

    def between_steps(self):
        if self.activate:
            if len(self.attention_store) == 0:
                self.attention_store = self.step_store
            else:
                for key in self.attention_store:
                    for i in range(len(self.attention_store[key])):
                        self.attention_store[key][i] += self.step_store[key][i]
            self.step_store = self.get_empty_store()

    def get_average_attention(self):
        average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
        return average_attention

    def reset(self):
        super(AttentionStore, self).reset()
        self.step_store = self.get_empty_store()
        self.attention_store = {}

    def __init__(self):
        super(AttentionStore, self).__init__()
        self.step_store = self.get_empty_store()
        self.attention_store = {}
        self.activate = True