promptpix / model /unet.py
RingL's picture
updated gradio application
4258b21
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from collections import OrderedDict
from .outputs import BaseOutput
from model.diffusers.models.unet_2d_condition import UNet2DConditionModel
all_feature_dic={}
def clear_feature_dic():
global all_feature_dic
all_feature_dic={}
all_feature_dic["low"]=[]
all_feature_dic["mid"]=[]
all_feature_dic["high"]=[]
all_feature_dic["highest"]=[]
def get_feature_dic():
global all_feature_dic
return all_feature_dic
class UNet2DConditionOutput(BaseOutput):
"""
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: torch.FloatTensor
class UNet2D(UNet2DConditionModel):
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
return_dict: bool = True,
) -> Union[UNet2DConditionOutput, Tuple]:
"""r
Args:
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps.to(dtype=torch.float32)
timesteps = timesteps[None].to(device=sample.device)
# if timesteps[0]==0:
# flag_time=True
# else:
# flag_time=False
if timesteps[0]==0 or timesteps[0]==1:
flag_time=True
else:
flag_time=False
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
emb = self.time_embedding(t_emb)
# 2. pre-process
sample = self.conv_in(sample)
if flag_time:
reshape_h=sample.reshape(int(sample.size()[0]/2),int(sample.size()[1]*2),sample.size()[2],sample.size()[3])
if reshape_h.size()[2]==8:
all_feature_dic["low"].append(reshape_h)
elif reshape_h.size()[2]==16:
all_feature_dic["mid"].append(reshape_h)
elif reshape_h.size()[2]==32:
all_feature_dic["high"].append(reshape_h)
elif reshape_h.size()[2]==64:
all_feature_dic["highest"].append(reshape_h)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
sample, res_samples = downsample_block(
hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
if flag_time:
for h in res_samples:
reshape_h=h.reshape(int(h.size()[0]/2),int(h.size()[1]*2),h.size()[2],h.size()[3])
# print(reshape_h.size()[2])
if reshape_h.size()[2]==8:
all_feature_dic["low"].append(reshape_h)
elif reshape_h.size()[2]==16:
all_feature_dic["mid"].append(reshape_h)
elif reshape_h.size()[2]==32:
all_feature_dic["high"].append(reshape_h)
elif reshape_h.size()[2]==64:
all_feature_dic["highest"].append(reshape_h)
down_block_res_samples += res_samples
# 4. mid
sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
if flag_time:
reshape_h=sample.reshape(int(sample.size()[0]/2),int(sample.size()[1]*2),sample.size()[2],sample.size()[3])
if reshape_h.size()[2]==8:
all_feature_dic["low"].append(reshape_h)
elif reshape_h.size()[2]==16:
all_feature_dic["mid"].append(reshape_h)
elif reshape_h.size()[2]==32:
all_feature_dic["high"].append(reshape_h)
elif reshape_h.size()[2]==64:
all_feature_dic["highest"].append(reshape_h)
# 5. up
for upsample_block in self.up_blocks:
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None:
sample, up_samples = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
)
else:
sample, up_samples = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples)
if flag_time:
for h in up_samples:
reshape_h=h.reshape(int(h.size()[0]/2),int(h.size()[1]*2),h.size()[2],h.size()[3])
# reshape_h=sample.reshape(int(sample.size()[0]/2),int(sample.size()[1]*2),sample.size()[2],sample.size()[3])
if reshape_h.size()[2]==8:
all_feature_dic["low"].append(reshape_h)
elif reshape_h.size()[2]==16:
all_feature_dic["mid"].append(reshape_h)
elif reshape_h.size()[2]==32:
all_feature_dic["high"].append(reshape_h)
elif reshape_h.size()[2]==64:
all_feature_dic["highest"].append(reshape_h)
# 6. post-process
# make sure hidden states is in float32
# when running in half-precision
sample = self.conv_norm_out(sample.float()).type(sample.dtype)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if not return_dict:
return (sample,)
return UNet2DConditionOutput(sample=sample)