Rivalcoder
Add First basic Version
192b91e
import os
import warnings
import logging
import time
from datetime import datetime
from fastapi import FastAPI, Request, HTTPException, Depends, Header
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from pdf_parser import parse_pdf_from_url_multithreaded as parse_pdf_from_url, parse_pdf_from_file_multithreaded as parse_pdf_from_file
from embedder import build_pinecone_index, preload_model
from retriever import retrieve_chunks
from llm import query_gemini
import uvicorn
# Set up cache directory for HuggingFace models
cache_dir = os.path.join(os.getcwd(), ".cache")
os.makedirs(cache_dir, exist_ok=True)
os.environ['HF_HOME'] = cache_dir
os.environ['TRANSFORMERS_CACHE'] = cache_dir
# Suppress TensorFlow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
os.environ['TF_LOGGING_LEVEL'] = 'ERROR'
os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0'
warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
logging.getLogger('tensorflow').setLevel(logging.ERROR)
app = FastAPI(title="HackRx Insurance Policy Assistant", version="1.0.0")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Preload the model at startup
@app.on_event("startup")
async def startup_event():
print("Starting up HackRx Insurance Policy Assistant...")
print("Preloading sentence transformer model...")
preload_model()
print("Model preloading completed. API is ready to serve requests!")
@app.get("/")
async def root():
return {"message": "HackRx Insurance Policy Assistant API is running!"}
@app.get("/health")
async def health_check():
return {"status": "healthy", "message": "API is ready to process requests"}
class QueryRequest(BaseModel):
documents: str
questions: list[str]
class LocalQueryRequest(BaseModel):
document_path: str
questions: list[str]
def verify_token(authorization: str = Header(None)):
if not authorization or not authorization.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Invalid authorization header")
token = authorization.replace("Bearer ", "")
# For demo purposes, accept any token. In production, validate against a database
if not token:
raise HTTPException(status_code=401, detail="Invalid token")
return token
@app.post("/api/v1/hackrx/run")
async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
start_time = time.time()
timing_data = {}
try:
print(f"\n=== INPUT JSON ===")
print(f"Documents: {request.documents}")
print(f"Questions: {request.questions}")
print(f"==================\n")
print(f"Processing {len(request.questions)} questions...")
# Time PDF parsing
pdf_start = time.time()
text_chunks = parse_pdf_from_url(request.documents)
pdf_time = time.time() - pdf_start
timing_data['pdf_parsing'] = round(pdf_time, 2)
print(f"Extracted {len(text_chunks)} text chunks from PDF")
# Time Pinecone index building/upsert
index_start = time.time()
pinecone_index = build_pinecone_index(text_chunks)
index_time = time.time() - index_start
timing_data['pinecone_index_building'] = round(index_time, 2)
texts = text_chunks # for retrieve_chunks
# Time chunk retrieval for all questions
retrieval_start = time.time()
all_chunks = set()
for i, question in enumerate(request.questions):
question_start = time.time()
top_chunks = retrieve_chunks(pinecone_index, texts, question)
question_time = time.time() - question_start
all_chunks.update(top_chunks)
retrieval_time = time.time() - retrieval_start
timing_data['chunk_retrieval'] = round(retrieval_time, 2)
print(f"Retrieved {len(all_chunks)} unique chunks")
# Time LLM processing
llm_start = time.time()
print(f"Processing all {len(request.questions)} questions in batch...")
response = query_gemini(request.questions, list(all_chunks))
llm_time = time.time() - llm_start
timing_data['llm_processing'] = round(llm_time, 2)
# Time response processing
response_start = time.time()
# Extract answers from the JSON response
if isinstance(response, dict) and "answers" in response:
answers = response["answers"]
while len(answers) < len(request.questions):
answers.append("Not Found")
answers = answers[:len(request.questions)]
else:
answers = [response] if isinstance(response, str) else []
while len(answers) < len(request.questions):
answers.append("Not Found")
answers = answers[:len(request.questions)]
response_time = time.time() - response_start
timing_data['response_processing'] = round(response_time, 2)
print(f"Generated {len(answers)} answers")
# Calculate total time
total_time = time.time() - start_time
timing_data['total_time'] = round(total_time, 2)
print(f"\n=== TIMING BREAKDOWN ===")
print(f"PDF Parsing: {timing_data['pdf_parsing']}s")
print(f"Pinecone Index Building: {timing_data['pinecone_index_building']}s")
print(f"Chunk Retrieval: {timing_data['chunk_retrieval']}s")
print(f"LLM Processing: {timing_data['llm_processing']}s")
print(f"Response Processing: {timing_data['response_processing']}s")
print(f"TOTAL TIME: {timing_data['total_time']}s")
print(f"=======================\n")
result = {"answers": answers}
print(f"=== OUTPUT JSON ===")
print(f"{result}")
print(f"==================\n")
return result
except Exception as e:
total_time = time.time() - start_time
print(f"Error after {total_time:.2f} seconds: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/api/v1/hackrx/local")
async def run_local_query(request: LocalQueryRequest):
start_time = time.time()
timing_data = {}
try:
print(f"\n=== INPUT JSON ===")
print(f"Document Path: {request.document_path}")
print(f"Questions: {request.questions}")
print(f"==================\n")
print(f"Processing local document: {request.document_path}")
print(f"Processing {len(request.questions)} questions...")
# Time local PDF parsing
pdf_start = time.time()
text_chunks = parse_pdf_from_file(request.document_path)
pdf_time = time.time() - pdf_start
timing_data['pdf_parsing'] = round(pdf_time, 2)
print(f"Extracted {len(text_chunks)} text chunks from local PDF")
# Time Pinecone index building/upsert
index_start = time.time()
pinecone_index = build_pinecone_index(text_chunks)
index_time = time.time() - index_start
timing_data['pinecone_index_building'] = round(index_time, 2)
texts = text_chunks
# Time chunk retrieval for all questions
retrieval_start = time.time()
all_chunks = set()
for i, question in enumerate(request.questions):
question_start = time.time()
top_chunks = retrieve_chunks(pinecone_index, texts, question)
question_time = time.time() - question_start
all_chunks.update(top_chunks)
retrieval_time = time.time() - retrieval_start
timing_data['chunk_retrieval'] = round(retrieval_time, 2)
print(f"Retrieved {len(all_chunks)} unique chunks")
# Time LLM processing
llm_start = time.time()
print(f"Processing all {len(request.questions)} questions in batch...")
response = query_gemini(request.questions, list(all_chunks))
llm_time = time.time() - llm_start
timing_data['llm_processing'] = round(llm_time, 2)
# Time response processing
response_start = time.time()
if isinstance(response, dict) and "answers" in response:
answers = response["answers"]
while len(answers) < len(request.questions):
answers.append("Not Found")
answers = answers[:len(request.questions)]
else:
answers = [response] if isinstance(response, str) else []
while len(answers) < len(request.questions):
answers.append("Not Found")
answers = answers[:len(request.questions)]
response_time = time.time() - response_start
timing_data['response_processing'] = round(response_time, 2)
print(f"Generated {len(answers)} answers")
total_time = time.time() - start_time
timing_data['total_time'] = round(total_time, 2)
print(f"\n=== TIMING BREAKDOWN ===")
print(f"PDF Parsing: {timing_data['pdf_parsing']}s")
print(f"Pinecone Index Building: {timing_data['pinecone_index_building']}s")
print(f"Chunk Retrieval: {timing_data['chunk_retrieval']}s")
print(f"LLM Processing: {timing_data['llm_processing']}s")
print(f"Response Processing: {timing_data['response_processing']}s")
print(f"TOTAL TIME: {timing_data['total_time']}s")
print(f"=======================\n")
result = {"answers": answers}
print(f"=== OUTPUT JSON ===")
print(f"{result}")
print(f"==================\n")
return result
except Exception as e:
total_time = time.time() - start_time
print(f"Error after {total_time:.2f} seconds: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run("app:app", host="0.0.0.0", port=port)