Rivalcoder
Add First basic Version
192b91e
import os
from pinecone import Pinecone, ServerlessSpec
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
load_dotenv()
cache_dir = os.path.join(os.getcwd(), ".cache")
os.makedirs(cache_dir, exist_ok=True)
os.environ['HF_HOME'] = cache_dir
os.environ['TRANSFORMERS_CACHE'] = cache_dir
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
PINECONE_ENV = os.getenv("PINECONE_ENV") # Not used in new SDK, keep cloud+region below instead
PINECONE_INDEX_NAME = 'bajaj-rag-assistant'
PINECONE_CLOUD = 'aws' # or 'gcp', or your choice, must match Pinecone project
PINECONE_REGION = 'us-east-1' # or your choice, must match Pinecone project
# Create Pinecone client globally
pc = Pinecone(api_key=PINECONE_API_KEY)
_model = None
def preload_model(model_name="paraphrase-MiniLM-L3-v2"):
global _model
if _model is not None:
return _model
_model = SentenceTransformer(model_name, cache_folder=cache_dir)
return _model
def get_model():
return preload_model()
def build_pinecone_index(chunks, index_name=PINECONE_INDEX_NAME):
model = get_model()
embeddings = model.encode(
chunks,
batch_size=128,
convert_to_numpy=True,
normalize_embeddings=True
)
# Create index if it doesn't exist
if index_name not in pc.list_indexes().names():
pc.create_index(
name=index_name,
dimension=embeddings.shape[1],
metric='cosine',
spec=ServerlessSpec(
cloud=PINECONE_CLOUD,
region=PINECONE_REGION
)
)
index = pc.Index(index_name)
# Upsert embeddings in Pinecone
vectors = [(f"id-{i}", emb.tolist(), {"text": chunk}) for i, (emb, chunk) in enumerate(zip(embeddings, chunks))]
index.upsert(vectors)
return index