from embedder import get_model def retrieve_chunks(index, texts, question, top_k=15): model = get_model() q_embedding = model.encode([question], convert_to_numpy=True, normalize_embeddings=True)[0] # Use Pinecone v3 index query res = index.query(vector=q_embedding.tolist(), top_k=top_k, include_metadata=True) selected_texts = [match['metadata']['text'] for match in res['matches']] return selected_texts