File size: 10,737 Bytes
cddddfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953f7ea
cddddfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953f7ea
 
cddddfc
 
 
 
 
 
 
 
 
953f7ea
cddddfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953f7ea
cddddfc
 
 
 
 
a7933c3
cddddfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953f7ea
cddddfc
 
 
 
 
 
 
 
 
 
953f7ea
cddddfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953f7ea
cddddfc
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from fastapi import APIRouter, HTTPException, Query, Request, BackgroundTasks
from pydantic import BaseModel
from services.ip_utils import get_client_ip
from services.db_logger import log_query
from services.embedder import build_faiss_index
from services.retriever import retrieve_chunks
from services.llm_service import query_gemini,query_openai
from Extraction_Models import parse_document_url, parse_document_file
from threading import Lock
import hashlib, time
from concurrent.futures import ThreadPoolExecutor

router = APIRouter()

class QueryRequest(BaseModel):
    url: str
    questions: list[str]

class LocalQueryRequest(BaseModel):
    document_path: str
    questions: list[str]

def get_document_id(url: str):
    return hashlib.md5(url.encode()).hexdigest()

doc_cache = {}
doc_cache_lock = Lock()

@router.delete("/cache/clear")
async def clear_cache(doc_id: str = Query(None), url: str = Query(None), doc_only: bool = Query(False)):
    cleared = {}
    if url:
        doc_id = get_document_id(url)
    if doc_id:
        with doc_cache_lock:
            if doc_id in doc_cache:
                del doc_cache[doc_id]
                cleared["doc_cache"] = f"Cleared document {doc_id}"
    else:
        with doc_cache_lock:
            doc_cache.clear()
            cleared["doc_cache"] = "Cleared ALL documents"
    return {"status": "success", "cleared": cleared}

def print_timings(timings: dict):
    print("\n=== TIMINGS ===")
    for k, v in timings.items():
        if isinstance(v, float):
            print(f"[TIMER] {k}: {v:.4f}s")
        elif isinstance(v, list):
            print(f"[TIMER] {k}: {', '.join(f'{x:.4f}s' for x in v)}")
        else:
            print(f"[TIMER] {k}: {v}")
    print("================\n")

@router.post("/hackrx/run")
async def run_query(request: QueryRequest, fastapi_request: Request, background_tasks: BackgroundTasks):
    timings = {}
    try:
        user_ip = get_client_ip(fastapi_request)
        user_agent = fastapi_request.headers.get("user-agent", "Unknown")
        doc_id = get_document_id(request.url)
        print("Input :",request.url,request.questions)
        # Parsing
        t_parse_start = time.time()
        with doc_cache_lock:
            if doc_id in doc_cache:
                cached = doc_cache[doc_id]
                text_chunks, index, texts = cached["chunks"], cached["index"], cached["texts"]
                timings["parse_time"] = 0
                timings["index_time"] = 0
            else:
                text_chunks = parse_document_url(request.url)
                t_parse_end = time.time()
                timings["parse_time"] = t_parse_end - t_parse_start

                # Indexing
                t_index_start = time.time()
                index, texts = build_faiss_index(text_chunks)
                t_index_end = time.time()
                timings["index_time"] = t_index_end - t_index_start

                doc_cache[doc_id] = {"chunks": text_chunks, "index": index, "texts": texts}
        timings["cache_check_time"] = time.time() - t_parse_start

        # Retrieval
        t_retrieve_start = time.time()
        all_chunks = set()
        for question in request.questions:
            all_chunks.update(retrieve_chunks(index, texts, question))
        context_chunks = list(all_chunks)
        timings["retrieval_time"] = time.time() - t_retrieve_start

        # LLM query
        t_llm_start = time.time()
        batch_size = 10
        results_dict = {}
        llm_batch_timings = []
        with ThreadPoolExecutor(max_workers=5) as executor:
            futures = []
            for i in range(0, len(request.questions), batch_size):
                batch = request.questions[i:i + batch_size]
                futures.append(executor.submit(query_openai, batch, context_chunks))
            for i, future in enumerate(futures):
                t_batch_start = time.time()
                result = future.result()
                t_batch_end = time.time()
                llm_batch_timings.append(t_batch_end - t_batch_start)
                if "answers" in result:
                    for j, ans in enumerate(result["answers"]):
                        results_dict[i * batch_size + j] = ans
        timings["llm_time"] = time.time() - t_llm_start
        timings["llm_batch_times"] = llm_batch_timings

        responses = [results_dict.get(i, "Not Found") for i in range(len(request.questions))]

        # Logging
        total_float_time = sum(v for v in timings.values() if isinstance(v, (int, float)))
        for q, a in zip(request.questions, responses):
            background_tasks.add_task(log_query, request.url, q, a, user_ip, total_float_time, user_agent)

        # Print timings in console
        print_timings(timings)

        # Return ONLY answers
        print("answers : ",responses)
        return {"answers": responses}

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {e}")

@router.post("/hackrx/local")
async def run_local_query(request: LocalQueryRequest, fastapi_request: Request, background_tasks: BackgroundTasks):
    timings = {}
    try:
        user_ip = get_client_ip(fastapi_request)
        user_agent = fastapi_request.headers.get("user-agent", "Unknown")

        # Parsing
        t_parse_start = time.time()
        text_chunks = parse_document_file(request.document_path)
        t_parse_end = time.time()
        timings["parse_time"] = t_parse_end - t_parse_start

        # Indexing
        t_index_start = time.time()
        index, texts = build_faiss_index(text_chunks)
        t_index_end = time.time()
        timings["index_time"] = t_index_end - t_index_start

        # Retrieval
        t_retrieve_start = time.time()
        all_chunks = set()
        for question in request.questions:
            all_chunks.update(retrieve_chunks(index, texts, question))
        context_chunks = list(all_chunks)
        timings["retrieval_time"] = time.time() - t_retrieve_start

        # LLM query
        t_llm_start = time.time()
        batch_size = 20
        results_dict = {}
        llm_batch_timings = []
        with ThreadPoolExecutor(max_workers=5) as executor:
            futures = []
            for i in range(0, len(request.questions), batch_size):
                batch = request.questions[i:i + batch_size]
                futures.append(executor.submit(query_gemini, batch, context_chunks))
            for i, future in enumerate(futures):
                t_batch_start = time.time()
                result = future.result()
                t_batch_end = time.time()
                llm_batch_timings.append(t_batch_end - t_batch_start)
                if "answers" in result:
                    for j, ans in enumerate(result["answers"]):
                        results_dict[i * batch_size + j] = ans
        timings["llm_time"] = time.time() - t_llm_start
        timings["llm_batch_times"] = llm_batch_timings

        responses = [results_dict.get(i, "Not Found") for i in range(len(request.questions))]

        # Logging
        total_float_time = sum(v for v in timings.values() if isinstance(v, (int, float)))
        for q, a in zip(request.questions, responses):
            background_tasks.add_task(log_query, request.document_path, q, a, user_ip, total_float_time, user_agent)

        # Print timings in console
        print_timings(timings)

        # Return ONLY answers
        return {"answers": responses}

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {e}")
    



@router.post("/hackrx/run_openai")
async def run_query_openai(request: QueryRequest, fastapi_request: Request, background_tasks: BackgroundTasks):
    timings = {}
    try:
        user_ip = get_client_ip(fastapi_request)
        user_agent = fastapi_request.headers.get("user-agent", "Unknown")
        doc_id = get_document_id(request.url)

        # Parsing
        t_parse_start = time.time()
        with doc_cache_lock:
            if doc_id in doc_cache:
                cached = doc_cache[doc_id]
                text_chunks, index, texts = cached["chunks"], cached["index"], cached["texts"]
                timings["parse_time"] = 0
                timings["index_time"] = 0
            else:
                text_chunks = parse_document_url(request.url)
                t_parse_end = time.time()
                timings["parse_time"] = t_parse_end - t_parse_start

                # Indexing
                t_index_start = time.time()
                index, texts = build_faiss_index(text_chunks)
                t_index_end = time.time()
                timings["index_time"] = t_index_end - t_index_start

                doc_cache[doc_id] = {"chunks": text_chunks, "index": index, "texts": texts}
        timings["cache_check_time"] = time.time() - t_parse_start

        # Retrieval
        t_retrieve_start = time.time()
        all_chunks = set()
        for question in request.questions:
            all_chunks.update(retrieve_chunks(index, texts, question))
        context_chunks = list(all_chunks)
        timings["retrieval_time"] = time.time() - t_retrieve_start

        # OpenAI LLM query
        t_llm_start = time.time()
        batch_size = 10
        results_dict = {}
        llm_batch_timings = []
        with ThreadPoolExecutor(max_workers=5) as executor:
            futures = []
            for i in range(0, len(request.questions), batch_size):
                batch = request.questions[i:i + batch_size]
                futures.append(executor.submit(query_gemini, batch, context_chunks))
            for i, future in enumerate(futures):
                t_batch_start = time.time()
                result = future.result()
                t_batch_end = time.time()
                llm_batch_timings.append(t_batch_end - t_batch_start)
                if "answers" in result:
                    for j, ans in enumerate(result["answers"]):
                        results_dict[i * batch_size + j] = ans
        timings["llm_time"] = time.time() - t_llm_start
        timings["llm_batch_times"] = llm_batch_timings

        responses = [results_dict.get(i, "Not Found") for i in range(len(request.questions))]

        # Logging
        total_float_time = sum(v for v in timings.values() if isinstance(v, (int, float)))
        for q, a in zip(request.questions, responses):
            background_tasks.add_task(log_query, request.url, q, a, user_ip, total_float_time, user_agent)

        # Print timings in console
        print_timings(timings)

        return {"answers": responses}

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {e}")