Spaces:
Running
Running
Stable
Browse files
app.py
CHANGED
@@ -1,16 +1,23 @@
|
|
1 |
import os
|
2 |
import pathlib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
# βββ Redirect Hugging Face & other caches into /tmp ββββββββββββββββββββββββ
|
5 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
6 |
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface"
|
7 |
os.environ["XDG_CACHE_HOME"] = "/tmp/.cache"
|
8 |
|
9 |
-
# βββ Redirect Gradioβs caches (general + examples) into /tmp ββββββββββββββ
|
10 |
os.environ["GRADIO_CACHE_DIR"] = "/tmp/.gradio"
|
11 |
os.environ["GRADIO_EXAMPLES_CACHE"] = "/tmp/.gradio/cached_examples"
|
12 |
|
13 |
-
# βββ Pre-create all writable dirs so nothing falls back to ./ .gradio or ./model
|
14 |
for d in (
|
15 |
"/tmp/huggingface",
|
16 |
"/tmp/.cache",
|
@@ -19,27 +26,12 @@ for d in (
|
|
19 |
):
|
20 |
pathlib.Path(d).mkdir(parents=True, exist_ok=True)
|
21 |
|
22 |
-
# βββ Your model directory under /tmp βββββββββββββββββββββββββββββββββββββββ
|
23 |
MODEL_DIR = "/tmp/model"
|
24 |
pathlib.Path(MODEL_DIR).mkdir(parents=True, exist_ok=True)
|
25 |
MODEL_PATH = os.path.join(MODEL_DIR, "best_unet_model.pth")
|
26 |
|
27 |
-
# βββ Now safely import everything else ββββββββββββββββββββββββββββββββββββ
|
28 |
-
import time
|
29 |
-
import torch
|
30 |
-
from models import UNet
|
31 |
-
from test_functions import process_image
|
32 |
-
from PIL import Image
|
33 |
-
import gradio as gr
|
34 |
-
from gradio_client import Client, handle_file
|
35 |
-
from huggingface_hub import hf_hub_download
|
36 |
-
import tempfile
|
37 |
-
import requests
|
38 |
-
|
39 |
|
40 |
-
# Path to your downloaded model
|
41 |
MODEL_PATH = os.path.join(MODEL_DIR, "best_unet_model.pth")
|
42 |
-
# Download model if missing
|
43 |
def download_model():
|
44 |
print("Starting model download at", time.strftime("%Y-%m-%d %H:%M:%S"))
|
45 |
path = hf_hub_download(
|
|
|
1 |
import os
|
2 |
import pathlib
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
from models import UNet
|
6 |
+
from test_functions import process_image
|
7 |
+
from PIL import Image
|
8 |
+
import gradio as gr
|
9 |
+
from gradio_client import Client, handle_file
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
import tempfile
|
12 |
+
import requests
|
13 |
|
|
|
14 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
15 |
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface"
|
16 |
os.environ["XDG_CACHE_HOME"] = "/tmp/.cache"
|
17 |
|
|
|
18 |
os.environ["GRADIO_CACHE_DIR"] = "/tmp/.gradio"
|
19 |
os.environ["GRADIO_EXAMPLES_CACHE"] = "/tmp/.gradio/cached_examples"
|
20 |
|
|
|
21 |
for d in (
|
22 |
"/tmp/huggingface",
|
23 |
"/tmp/.cache",
|
|
|
26 |
):
|
27 |
pathlib.Path(d).mkdir(parents=True, exist_ok=True)
|
28 |
|
|
|
29 |
MODEL_DIR = "/tmp/model"
|
30 |
pathlib.Path(MODEL_DIR).mkdir(parents=True, exist_ok=True)
|
31 |
MODEL_PATH = os.path.join(MODEL_DIR, "best_unet_model.pth")
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
34 |
MODEL_PATH = os.path.join(MODEL_DIR, "best_unet_model.pth")
|
|
|
35 |
def download_model():
|
36 |
print("Starting model download at", time.strftime("%Y-%m-%d %H:%M:%S"))
|
37 |
path = hf_hub_download(
|