Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
import torch | |
# Настройка 4-bit квантизации | |
quant_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True | |
) | |
# Загружаем модель и токенизатор | |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=quant_config, | |
device_map="auto", | |
low_cpu_mem_usage=True | |
) | |
def chat(message, history): | |
messages = [{"role": "system", "content": "You are a friendly Chatbot."}] | |
for user_msg, assistant_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") | |
outputs = model.generate( | |
inputs, | |
max_new_tokens=512, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.95 | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
chatbot = gr.ChatInterface( | |
fn=chat, | |
title="TinyLlama 1.1B Chatbot", | |
description="Chat with TinyLlama-1.1B-Chat-v1.0 (4-bit quantized)" | |
) | |
if __name__ == "__main__": | |
chatbot.launch() | |