import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch # Настройка 4-bit квантизации quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True ) # Загружаем модель и токенизатор model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=quant_config, device_map="auto", low_cpu_mem_usage=True ) def chat(message, history): messages = [{"role": "system", "content": "You are a friendly Chatbot."}] for user_msg, assistant_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") outputs = model.generate( inputs, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response chatbot = gr.ChatInterface( fn=chat, title="TinyLlama 1.1B Chatbot", description="Chat with TinyLlama-1.1B-Chat-v1.0 (4-bit quantized)" ) if __name__ == "__main__": chatbot.launch()