File size: 6,809 Bytes
8e51443 39a2e73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import math
import uuid
import numpy as np
import onnxruntime as ort
from PIL import Image
import gradio as gr
import tempfile
import requests
MODEL_DIR = "model"
MODEL_X2_PATH = os.path.join(MODEL_DIR, "Real-ESRGAN_x2plus.onnx")
MODEL_X4_PATH = os.path.join(MODEL_DIR, "Real-ESRGAN-x4plus.onnx")
FILE_ID_X2 = "15xmXXZNH2wMyeQv4ie5hagT7eWK9MgP6"
FILE_ID_X4 = "1wDBHad9RCJgJDGsPdapLYl3cr8j-PMJ6"
def download_from_drive(file_id: str, dest_path: str):
URL = "https://drive.google.com/uc?export=download"
session = requests.Session()
response = session.get(URL, params={"id": file_id}, stream=True)
token = None
for key, value in response.cookies.items():
if key.startswith('download_warning'):
token = value
break
if token:
params = {"id": file_id, "confirm": token}
response = session.get(URL, params=params, stream=True)
os.makedirs(os.path.dirname(dest_path), exist_ok=True)
with open(dest_path, "wb") as f:
for chunk in response.iter_content(chunk_size=32768):
if chunk:
f.write(chunk)
print(f"Model telah diunduh dan disimpan di {dest_path}")
return dest_path
if not os.path.isfile(MODEL_X2_PATH):
download_from_drive(FILE_ID_X2, MODEL_X2_PATH)
# Unduh model ×4
if not os.path.isfile(MODEL_X4_PATH):
download_from_drive(FILE_ID_X4, MODEL_X4_PATH)
sess_opts = ort.SessionOptions()
sess_opts.intra_op_num_threads = 2
sess_opts.inter_op_num_threads = 2
session_x2 = ort.InferenceSession(MODEL_X2_PATH, sess_options=sess_opts, providers=["CPUExecutionProvider"])
session_x4 = ort.InferenceSession(MODEL_X4_PATH, sess_options=sess_opts, providers=["CPUExecutionProvider"])
input_meta_x2 = session_x2.get_inputs()[0]
_, _, H_in_x2, W_in_x2 = tuple(input_meta_x2.shape)
H_in_x2, W_in_x2 = int(H_in_x2), int(W_in_x2)
input_meta_x4 = session_x4.get_inputs()[0]
_, _, H_in_x4, W_in_x4 = tuple(input_meta_x4.shape)
H_in_x4, W_in_x4 = int(H_in_x4), int(W_in_x4)
dummy_x2 = np.zeros((1, 3, H_in_x2, W_in_x2), dtype=np.float32)
dummy_out_x2 = session_x2.run(None, {input_meta_x2.name: dummy_x2})[0]
_, _, H_out_x2, W_out_x2 = dummy_out_x2.shape
SCALE_X2 = H_out_x2 // H_in_x2
if SCALE_X2 != 2:
raise RuntimeError(f"Model ×2 menghasilkan scale = {SCALE_X2}, bukan 2")
dummy_x4 = np.zeros((1, 3, H_in_x4, W_in_x4), dtype=np.float32)
dummy_out_x4 = session_x4.run(None, {input_meta_x4.name: dummy_x4})[0]
_, _, H_out_x4, W_out_x4 = dummy_out_x4.shape
SCALE_X4 = H_out_x4 // H_in_x4
if SCALE_X4 != 4:
raise RuntimeError(f"Model ×4 menghasilkan scale = {SCALE_X4}, bukan 4")
def run_tile_x2(tile_np: np.ndarray) -> np.ndarray:
patch_nchw = np.transpose(tile_np, (2, 0, 1))[None, ...]
out_nchw = session_x2.run(None, {input_meta_x2.name: patch_nchw})[0]
out_nchw = np.squeeze(out_nchw, axis=0)
out_hwc = np.transpose(out_nchw, (1, 2, 0))
return out_hwc
def run_tile_x4(tile_np: np.ndarray) -> np.ndarray:
patch_nchw = np.transpose(tile_np, (2, 0, 1))[None, ...]
out_nchw = session_x4.run(None, {input_meta_x4.name: patch_nchw})[0]
out_nchw = np.squeeze(out_nchw, axis=0)
out_hwc = np.transpose(out_nchw, (1, 2, 0))
return out_hwc
def tile_upscale(input_img: Image.Image, scale: int, max_dim=1024):
if scale == 2:
H_in, W_in, run_tile, SCALE = H_in_x2, W_in_x2, run_tile_x2, SCALE_X2
else:
H_in, W_in, run_tile, SCALE = H_in_x4, W_in_x4, run_tile_x4, SCALE_X4
w, h = input_img.size
if w > max_dim or h > max_dim:
scale_factor = max_dim / float(max(w, h))
new_w = int(w * scale_factor)
new_h = int(h * scale_factor)
input_img = input_img.resize((new_w, new_h), Image.LANCZOS)
img_rgb = input_img.convert("RGB")
arr = np.array(img_rgb).astype(np.float32) / 255.0
h_orig, w_orig, _ = arr.shape
tiles_h = math.ceil(h_orig / H_in)
tiles_w = math.ceil(w_orig / W_in)
pad_h = tiles_h * H_in - h_orig
pad_w = tiles_w * W_in - w_orig
arr_padded = np.pad(arr, ((0, pad_h), (0, pad_w), (0, 0)), mode="reflect")
out_h = tiles_h * H_in * SCALE
out_w = tiles_w * W_in * SCALE
out_arr = np.zeros((out_h, out_w, 3), dtype=np.float32)
for i in range(tiles_h):
for j in range(tiles_w):
y0, x0 = i * H_in, j * W_in
tile = arr_padded[y0:y0+H_in, x0:x0+W_in, :]
up_tile = run_tile(tile)
oy0, ox0 = i * H_in * SCALE, j * W_in * SCALE
out_arr[oy0:oy0 + H_in * SCALE, ox0:ox0 + W_in * SCALE, :] = up_tile
final_arr = out_arr[0:h_orig * SCALE, 0:w_orig * SCALE, :]
final_arr = np.clip(final_arr, 0.0, 1.0)
final_uint8 = (final_arr * 255.0).round().astype(np.uint8)
final_pil = Image.fromarray(final_uint8)
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
final_pil.save(tmp.name, format="PNG")
tmp.close()
return final_pil, tmp.name
def upscale_x2(input_img: Image.Image):
return tile_upscale(input_img, scale=2)
def standard_upscale(input_img: Image.Image):
return tile_upscale(input_img, scale=4)
def premium_upscale(input_img: Image.Image):
final_4x, _ = tile_upscale(input_img, scale=4)
w_orig, h_orig = input_img.size
target_size = (w_orig * 8, h_orig * 8)
final_8x = final_4x.resize(target_size, resample=Image.LANCZOS)
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
final_8x.save(tmp.name, format="PNG")
tmp.close()
return final_8x, tmp.name
css = """
#x2-btn {
background-color: lightgreen !important;
color: black !important;
}
#premium-btn {
background-color: gold !important;
color: black !important;
}
"""
with gr.Blocks(css=css, title="SpectraGAN Triple-Mode Upscaler") as demo:
gr.Markdown(
"""
# SpectraGAN Upscaler
**Upscale (×2)**, **Standard Upscale (×4)** atau **Premium Upscale 🚀 (×8)**.
"""
)
with gr.Row():
inp_image = gr.Image(type="pil", label="Upload Source Image")
with gr.Row():
btn_x2 = gr.Button("Upscale (×2)", elem_id="x2-btn")
btn_std = gr.Button("Standard Upscale (×4)", variant="primary", elem_id="std-btn")
btn_prem = gr.Button("Premium Upscale 🚀 (×8)", elem_id="premium-btn")
out_preview = gr.Image(type="pil", label="Upscaled Preview")
out_download = gr.DownloadButton("⬇️ Download PNG", visible=True)
btn_x2.click(fn=upscale_x2, inputs=inp_image, outputs=[out_preview, out_download])
btn_std.click(fn=standard_upscale, inputs=inp_image, outputs=[out_preview, out_download])
btn_prem.click(fn=premium_upscale, inputs=inp_image, outputs=[out_preview, out_download])
demo.launch(server_name="0.0.0.0", server_port=7860) |