File size: 6,809 Bytes
8e51443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39a2e73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import math
import uuid
import numpy as np
import onnxruntime as ort
from PIL import Image
import gradio as gr
import tempfile
import requests


MODEL_DIR     = "model"
MODEL_X2_PATH = os.path.join(MODEL_DIR, "Real-ESRGAN_x2plus.onnx")
MODEL_X4_PATH = os.path.join(MODEL_DIR, "Real-ESRGAN-x4plus.onnx")


FILE_ID_X2 = "15xmXXZNH2wMyeQv4ie5hagT7eWK9MgP6"
FILE_ID_X4 = "1wDBHad9RCJgJDGsPdapLYl3cr8j-PMJ6"

def download_from_drive(file_id: str, dest_path: str):
  
    URL = "https://drive.google.com/uc?export=download"
    session = requests.Session()

    
    response = session.get(URL, params={"id": file_id}, stream=True)
    token = None
    for key, value in response.cookies.items():
        if key.startswith('download_warning'):
            token = value
            break

    
    if token:
        params = {"id": file_id, "confirm": token}
        response = session.get(URL, params=params, stream=True)

    
    os.makedirs(os.path.dirname(dest_path), exist_ok=True)
    with open(dest_path, "wb") as f:
        for chunk in response.iter_content(chunk_size=32768):
            if chunk:
                f.write(chunk)
    print(f"Model telah diunduh dan disimpan di {dest_path}")
    return dest_path


if not os.path.isfile(MODEL_X2_PATH):
    download_from_drive(FILE_ID_X2, MODEL_X2_PATH)

# Unduh model ×4
if not os.path.isfile(MODEL_X4_PATH):
    download_from_drive(FILE_ID_X4, MODEL_X4_PATH)


sess_opts = ort.SessionOptions()
sess_opts.intra_op_num_threads = 2
sess_opts.inter_op_num_threads = 2

session_x2 = ort.InferenceSession(MODEL_X2_PATH, sess_options=sess_opts, providers=["CPUExecutionProvider"])
session_x4 = ort.InferenceSession(MODEL_X4_PATH, sess_options=sess_opts, providers=["CPUExecutionProvider"])


input_meta_x2 = session_x2.get_inputs()[0]
_, _, H_in_x2, W_in_x2 = tuple(input_meta_x2.shape)
H_in_x2, W_in_x2 = int(H_in_x2), int(W_in_x2)

input_meta_x4 = session_x4.get_inputs()[0]
_, _, H_in_x4, W_in_x4 = tuple(input_meta_x4.shape)
H_in_x4, W_in_x4 = int(H_in_x4), int(W_in_x4)


dummy_x2 = np.zeros((1, 3, H_in_x2, W_in_x2), dtype=np.float32)
dummy_out_x2 = session_x2.run(None, {input_meta_x2.name: dummy_x2})[0]
_, _, H_out_x2, W_out_x2 = dummy_out_x2.shape
SCALE_X2 = H_out_x2 // H_in_x2
if SCALE_X2 != 2:
    raise RuntimeError(f"Model ×2 menghasilkan scale = {SCALE_X2}, bukan 2")

dummy_x4 = np.zeros((1, 3, H_in_x4, W_in_x4), dtype=np.float32)
dummy_out_x4 = session_x4.run(None, {input_meta_x4.name: dummy_x4})[0]
_, _, H_out_x4, W_out_x4 = dummy_out_x4.shape
SCALE_X4 = H_out_x4 // H_in_x4
if SCALE_X4 != 4:
    raise RuntimeError(f"Model ×4 menghasilkan scale = {SCALE_X4}, bukan 4")


def run_tile_x2(tile_np: np.ndarray) -> np.ndarray:
    patch_nchw = np.transpose(tile_np, (2, 0, 1))[None, ...]
    out_nchw = session_x2.run(None, {input_meta_x2.name: patch_nchw})[0]
    out_nchw = np.squeeze(out_nchw, axis=0)
    out_hwc  = np.transpose(out_nchw, (1, 2, 0))
    return out_hwc

def run_tile_x4(tile_np: np.ndarray) -> np.ndarray:
    patch_nchw = np.transpose(tile_np, (2, 0, 1))[None, ...]
    out_nchw = session_x4.run(None, {input_meta_x4.name: patch_nchw})[0]
    out_nchw = np.squeeze(out_nchw, axis=0)
    out_hwc  = np.transpose(out_nchw, (1, 2, 0))
    return out_hwc


def tile_upscale(input_img: Image.Image, scale: int, max_dim=1024):
    if scale == 2:
        H_in, W_in, run_tile, SCALE = H_in_x2, W_in_x2, run_tile_x2, SCALE_X2
    else:
        H_in, W_in, run_tile, SCALE = H_in_x4, W_in_x4, run_tile_x4, SCALE_X4

    
    w, h = input_img.size
    if w > max_dim or h > max_dim:
        scale_factor = max_dim / float(max(w, h))
        new_w = int(w * scale_factor)
        new_h = int(h * scale_factor)
        input_img = input_img.resize((new_w, new_h), Image.LANCZOS)

    img_rgb = input_img.convert("RGB")
    arr = np.array(img_rgb).astype(np.float32) / 255.0
    h_orig, w_orig, _ = arr.shape

    tiles_h = math.ceil(h_orig / H_in)
    tiles_w = math.ceil(w_orig / W_in)
    pad_h = tiles_h * H_in - h_orig
    pad_w = tiles_w * W_in - w_orig

    arr_padded = np.pad(arr, ((0, pad_h), (0, pad_w), (0, 0)), mode="reflect")
    out_h = tiles_h * H_in * SCALE
    out_w = tiles_w * W_in * SCALE
    out_arr = np.zeros((out_h, out_w, 3), dtype=np.float32)

    for i in range(tiles_h):
        for j in range(tiles_w):
            y0, x0 = i * H_in, j * W_in
            tile = arr_padded[y0:y0+H_in, x0:x0+W_in, :]
            up_tile = run_tile(tile)
            oy0, ox0 = i * H_in * SCALE, j * W_in * SCALE
            out_arr[oy0:oy0 + H_in * SCALE, ox0:ox0 + W_in * SCALE, :] = up_tile

    final_arr = out_arr[0:h_orig * SCALE, 0:w_orig * SCALE, :]
    final_arr = np.clip(final_arr, 0.0, 1.0)
    final_uint8 = (final_arr * 255.0).round().astype(np.uint8)
    final_pil = Image.fromarray(final_uint8)

    tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
    final_pil.save(tmp.name, format="PNG")
    tmp.close()
    return final_pil, tmp.name


def upscale_x2(input_img: Image.Image):
    return tile_upscale(input_img, scale=2)

def standard_upscale(input_img: Image.Image):
    return tile_upscale(input_img, scale=4)

def premium_upscale(input_img: Image.Image):
    final_4x, _ = tile_upscale(input_img, scale=4)
    w_orig, h_orig = input_img.size
    target_size = (w_orig * 8, h_orig * 8)
    final_8x = final_4x.resize(target_size, resample=Image.LANCZOS)
    tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
    final_8x.save(tmp.name, format="PNG")
    tmp.close()
    return final_8x, tmp.name


css = """
#x2-btn {
    background-color: lightgreen !important;
    color: black !important;
}
#premium-btn {
    background-color: gold !important;
    color: black !important;
}
"""


with gr.Blocks(css=css, title="SpectraGAN Triple-Mode Upscaler") as demo:
    gr.Markdown(
        """
        # SpectraGAN Upscaler  
        **Upscale (×2)**, **Standard Upscale (×4)** atau **Premium Upscale 🚀 (×8)**.  
        
        """
    )

    with gr.Row():
        inp_image = gr.Image(type="pil", label="Upload Source Image")

    with gr.Row():
        btn_x2   = gr.Button("Upscale (×2)", elem_id="x2-btn")
        btn_std  = gr.Button("Standard Upscale (×4)", variant="primary", elem_id="std-btn")
        btn_prem = gr.Button("Premium Upscale 🚀 (×8)", elem_id="premium-btn")

    out_preview  = gr.Image(type="pil", label="Upscaled Preview")
    out_download = gr.DownloadButton("⬇️ Download PNG", visible=True)

    btn_x2.click(fn=upscale_x2, inputs=inp_image, outputs=[out_preview, out_download])
    btn_std.click(fn=standard_upscale, inputs=inp_image, outputs=[out_preview, out_download])
    btn_prem.click(fn=premium_upscale, inputs=inp_image, outputs=[out_preview, out_download])

demo.launch(server_name="0.0.0.0", server_port=7860)