Spaces:
Running
Running
Raghu
commited on
Commit
·
acf3ed2
1
Parent(s):
23980e2
Add TrOCR and PaddleOCR to OCR ensemble for improved accuracy
Browse files- app.py +255 -116
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -369,16 +369,51 @@ class EnsembleDocumentClassifier:
|
|
| 369 |
# ============================================================================
|
| 370 |
|
| 371 |
class ReceiptOCR:
|
| 372 |
-
"""Enhanced OCR with EasyOCR +
|
| 373 |
|
| 374 |
def __init__(self):
|
| 375 |
self.reader = None
|
|
|
|
|
|
|
| 376 |
self.use_tesseract = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
try:
|
| 378 |
import pytesseract
|
| 379 |
self.use_tesseract = True
|
| 380 |
except ImportError:
|
| 381 |
-
|
| 382 |
|
| 383 |
def load(self):
|
| 384 |
if self.reader is None:
|
|
@@ -410,7 +445,7 @@ class ReceiptOCR:
|
|
| 410 |
# Denoise
|
| 411 |
denoised = cv2.fastNlMeansDenoising(enhanced, h=10)
|
| 412 |
|
| 413 |
-
# Convert back to RGB for
|
| 414 |
return cv2.cvtColor(denoised, cv2.COLOR_GRAY2RGB)
|
| 415 |
|
| 416 |
elif method == 'sharpen':
|
|
@@ -424,20 +459,106 @@ class ReceiptOCR:
|
|
| 424 |
sharpened = cv2.cvtColor(sharpened, cv2.COLOR_GRAY2RGB)
|
| 425 |
return sharpened
|
| 426 |
|
| 427 |
-
elif method == 'binarize':
|
| 428 |
-
# Adaptive thresholding
|
| 429 |
-
if len(img_array.shape) == 3:
|
| 430 |
-
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
| 431 |
-
else:
|
| 432 |
-
gray = img_array
|
| 433 |
-
binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 434 |
-
cv2.THRESH_BINARY, 11, 2)
|
| 435 |
-
return cv2.cvtColor(binary, cv2.COLOR_GRAY2RGB)
|
| 436 |
-
|
| 437 |
return img_array
|
| 438 |
|
| 439 |
-
def
|
| 440 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
if not self.use_tesseract:
|
| 442 |
return []
|
| 443 |
|
|
@@ -449,7 +570,6 @@ class ReceiptOCR:
|
|
| 449 |
else:
|
| 450 |
pil_image = Image.fromarray(image).convert('RGB')
|
| 451 |
|
| 452 |
-
# Get detailed output with bounding boxes
|
| 453 |
data = pytesseract.image_to_data(pil_image, output_type=pytesseract.Output.DICT)
|
| 454 |
|
| 455 |
results = []
|
|
@@ -473,44 +593,6 @@ class ReceiptOCR:
|
|
| 473 |
print(f"Tesseract OCR error: {e}")
|
| 474 |
return []
|
| 475 |
|
| 476 |
-
def _merge_ocr_results(self, easyocr_results, tesseract_results):
|
| 477 |
-
"""Merge results from multiple OCR engines, preferring higher confidence."""
|
| 478 |
-
if not tesseract_results:
|
| 479 |
-
return easyocr_results
|
| 480 |
-
|
| 481 |
-
# Create a map of EasyOCR results by approximate position
|
| 482 |
-
merged = []
|
| 483 |
-
used_tesseract = set()
|
| 484 |
-
|
| 485 |
-
for easy_result in easyocr_results:
|
| 486 |
-
best_match = None
|
| 487 |
-
best_iou = 0
|
| 488 |
-
|
| 489 |
-
# Find best matching Tesseract result
|
| 490 |
-
for i, tess_result in enumerate(tesseract_results):
|
| 491 |
-
if i in used_tesseract:
|
| 492 |
-
continue
|
| 493 |
-
|
| 494 |
-
# Simple IoU calculation
|
| 495 |
-
iou = self._compute_iou(easy_result['bbox'], tess_result['bbox'])
|
| 496 |
-
if iou > best_iou and iou > 0.3: # 30% overlap threshold
|
| 497 |
-
best_iou = iou
|
| 498 |
-
best_match = (i, tess_result)
|
| 499 |
-
|
| 500 |
-
if best_match and best_match[1]['confidence'] > easy_result['confidence']:
|
| 501 |
-
# Use Tesseract result if it's more confident
|
| 502 |
-
merged.append(best_match[1])
|
| 503 |
-
used_tesseract.add(best_match[0])
|
| 504 |
-
else:
|
| 505 |
-
merged.append(easy_result)
|
| 506 |
-
|
| 507 |
-
# Add unused Tesseract results
|
| 508 |
-
for i, tess_result in enumerate(tesseract_results):
|
| 509 |
-
if i not in used_tesseract:
|
| 510 |
-
merged.append(tess_result)
|
| 511 |
-
|
| 512 |
-
return merged
|
| 513 |
-
|
| 514 |
def _compute_iou(self, box1, box2):
|
| 515 |
"""Compute Intersection over Union for bounding boxes."""
|
| 516 |
x1_1, y1_1, x2_1, y2_1 = box1
|
|
@@ -528,78 +610,135 @@ class ReceiptOCR:
|
|
| 528 |
|
| 529 |
return inter_area / union_area if union_area > 0 else 0
|
| 530 |
|
| 531 |
-
def
|
| 532 |
-
"""
|
| 533 |
-
if
|
| 534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
|
| 536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
if isinstance(image, Image.Image):
|
| 538 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
|
| 540 |
-
#
|
| 541 |
try:
|
| 542 |
-
|
|
|
|
|
|
|
| 543 |
except Exception as e:
|
| 544 |
print(f"EasyOCR error: {e}")
|
| 545 |
-
results = []
|
| 546 |
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
|
|
|
|
|
|
| 598 |
|
| 599 |
# Sort by confidence (highest first)
|
| 600 |
-
|
| 601 |
|
| 602 |
-
return
|
| 603 |
|
| 604 |
def postprocess_receipt(self, ocr_results):
|
| 605 |
"""Extract structured fields from OCR results with improved patterns."""
|
|
|
|
| 369 |
# ============================================================================
|
| 370 |
|
| 371 |
class ReceiptOCR:
|
| 372 |
+
"""Enhanced OCR with EasyOCR + TrOCR + PaddleOCR + Tesseract ensemble."""
|
| 373 |
|
| 374 |
def __init__(self):
|
| 375 |
self.reader = None
|
| 376 |
+
self.trocr_engine = None
|
| 377 |
+
self.paddleocr_engine = None
|
| 378 |
self.use_tesseract = False
|
| 379 |
+
|
| 380 |
+
# Engine weights for ensemble
|
| 381 |
+
self.engine_weights = {
|
| 382 |
+
'trocr': 0.40, # Highest weight - best quality
|
| 383 |
+
'easyocr': 0.35,
|
| 384 |
+
'paddleocr': 0.30,
|
| 385 |
+
'tesseract': 0.20
|
| 386 |
+
}
|
| 387 |
+
|
| 388 |
+
# Try to initialize TrOCR
|
| 389 |
+
try:
|
| 390 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 391 |
+
self.trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
|
| 392 |
+
self.trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed")
|
| 393 |
+
self.trocr_model = self.trocr_model.to(DEVICE)
|
| 394 |
+
self.trocr_model.eval()
|
| 395 |
+
self.trocr_available = True
|
| 396 |
+
print("TrOCR initialized")
|
| 397 |
+
except Exception as e:
|
| 398 |
+
self.trocr_available = False
|
| 399 |
+
print(f"TrOCR not available: {e}")
|
| 400 |
+
|
| 401 |
+
# Try to initialize PaddleOCR
|
| 402 |
+
try:
|
| 403 |
+
from paddleocr import PaddleOCR
|
| 404 |
+
self.paddleocr_engine = PaddleOCR(use_angle_cls=True, lang='en', show_log=False)
|
| 405 |
+
self.paddleocr_available = True
|
| 406 |
+
print("PaddleOCR initialized")
|
| 407 |
+
except Exception as e:
|
| 408 |
+
self.paddleocr_available = False
|
| 409 |
+
print(f"PaddleOCR not available: {e}")
|
| 410 |
+
|
| 411 |
+
# Try to initialize Tesseract
|
| 412 |
try:
|
| 413 |
import pytesseract
|
| 414 |
self.use_tesseract = True
|
| 415 |
except ImportError:
|
| 416 |
+
self.use_tesseract = False
|
| 417 |
|
| 418 |
def load(self):
|
| 419 |
if self.reader is None:
|
|
|
|
| 445 |
# Denoise
|
| 446 |
denoised = cv2.fastNlMeansDenoising(enhanced, h=10)
|
| 447 |
|
| 448 |
+
# Convert back to RGB for OCR engines
|
| 449 |
return cv2.cvtColor(denoised, cv2.COLOR_GRAY2RGB)
|
| 450 |
|
| 451 |
elif method == 'sharpen':
|
|
|
|
| 459 |
sharpened = cv2.cvtColor(sharpened, cv2.COLOR_GRAY2RGB)
|
| 460 |
return sharpened
|
| 461 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
return img_array
|
| 463 |
|
| 464 |
+
def _run_easyocr(self, image):
|
| 465 |
+
"""Run EasyOCR."""
|
| 466 |
+
if self.reader is None:
|
| 467 |
+
self.load()
|
| 468 |
+
|
| 469 |
+
results = self.reader.readtext(image)
|
| 470 |
+
extracted = []
|
| 471 |
+
for bbox, text, conf in results:
|
| 472 |
+
x_coords = [p[0] for p in bbox]
|
| 473 |
+
y_coords = [p[1] for p in bbox]
|
| 474 |
+
extracted.append({
|
| 475 |
+
'text': text.strip(),
|
| 476 |
+
'confidence': conf,
|
| 477 |
+
'bbox': [min(x_coords), min(y_coords), max(x_coords), max(y_coords)],
|
| 478 |
+
'engine': 'easyocr'
|
| 479 |
+
})
|
| 480 |
+
return extracted
|
| 481 |
+
|
| 482 |
+
def _run_trocr(self, image, boxes):
|
| 483 |
+
"""Run TrOCR on detected text regions."""
|
| 484 |
+
if not self.trocr_available:
|
| 485 |
+
return []
|
| 486 |
+
|
| 487 |
+
if isinstance(image, np.ndarray):
|
| 488 |
+
pil_image = Image.fromarray(image).convert('RGB')
|
| 489 |
+
else:
|
| 490 |
+
pil_image = image.convert('RGB')
|
| 491 |
+
|
| 492 |
+
results = []
|
| 493 |
+
for box in boxes:
|
| 494 |
+
try:
|
| 495 |
+
if isinstance(box, list) and len(box) >= 4:
|
| 496 |
+
# Convert to [x1, y1, x2, y2]
|
| 497 |
+
if isinstance(box[0], list):
|
| 498 |
+
x1 = int(min(p[0] for p in box))
|
| 499 |
+
y1 = int(min(p[1] for p in box))
|
| 500 |
+
x2 = int(max(p[0] for p in box))
|
| 501 |
+
y2 = int(max(p[1] for p in box))
|
| 502 |
+
else:
|
| 503 |
+
x1, y1, x2, y2 = [int(b) for b in box[:4]]
|
| 504 |
+
|
| 505 |
+
# Crop and recognize
|
| 506 |
+
cropped = pil_image.crop((x1, y1, x2, y2))
|
| 507 |
+
|
| 508 |
+
# TrOCR recognition
|
| 509 |
+
pixel_values = self.trocr_processor(images=cropped, return_tensors="pt").pixel_values.to(DEVICE)
|
| 510 |
+
with torch.no_grad():
|
| 511 |
+
generated_ids = self.trocr_model.generate(
|
| 512 |
+
pixel_values,
|
| 513 |
+
max_length=128,
|
| 514 |
+
num_beams=4,
|
| 515 |
+
early_stopping=True
|
| 516 |
+
)
|
| 517 |
+
text = self.trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 518 |
+
|
| 519 |
+
if text.strip():
|
| 520 |
+
results.append({
|
| 521 |
+
'text': text.strip(),
|
| 522 |
+
'confidence': 0.9, # TrOCR doesn't provide confidence, use high default
|
| 523 |
+
'bbox': [x1, y1, x2, y2],
|
| 524 |
+
'engine': 'trocr'
|
| 525 |
+
})
|
| 526 |
+
except Exception as e:
|
| 527 |
+
continue
|
| 528 |
+
|
| 529 |
+
return results
|
| 530 |
+
|
| 531 |
+
def _run_paddleocr(self, image):
|
| 532 |
+
"""Run PaddleOCR."""
|
| 533 |
+
if not self.paddleocr_available:
|
| 534 |
+
return []
|
| 535 |
+
|
| 536 |
+
try:
|
| 537 |
+
result = self.paddleocr_engine.ocr(image, cls=True)
|
| 538 |
+
|
| 539 |
+
if result is None or len(result) == 0 or result[0] is None:
|
| 540 |
+
return []
|
| 541 |
+
|
| 542 |
+
extracted = []
|
| 543 |
+
for line in result[0]:
|
| 544 |
+
if line is None:
|
| 545 |
+
continue
|
| 546 |
+
bbox, (text, conf) = line
|
| 547 |
+
x_coords = [p[0] for p in bbox]
|
| 548 |
+
y_coords = [p[1] for p in bbox]
|
| 549 |
+
extracted.append({
|
| 550 |
+
'text': text.strip(),
|
| 551 |
+
'confidence': conf,
|
| 552 |
+
'bbox': [min(x_coords), min(y_coords), max(x_coords), max(y_coords)],
|
| 553 |
+
'engine': 'paddleocr'
|
| 554 |
+
})
|
| 555 |
+
return extracted
|
| 556 |
+
except Exception as e:
|
| 557 |
+
print(f"PaddleOCR error: {e}")
|
| 558 |
+
return []
|
| 559 |
+
|
| 560 |
+
def _run_tesseract(self, image):
|
| 561 |
+
"""Run Tesseract OCR."""
|
| 562 |
if not self.use_tesseract:
|
| 563 |
return []
|
| 564 |
|
|
|
|
| 570 |
else:
|
| 571 |
pil_image = Image.fromarray(image).convert('RGB')
|
| 572 |
|
|
|
|
| 573 |
data = pytesseract.image_to_data(pil_image, output_type=pytesseract.Output.DICT)
|
| 574 |
|
| 575 |
results = []
|
|
|
|
| 593 |
print(f"Tesseract OCR error: {e}")
|
| 594 |
return []
|
| 595 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 596 |
def _compute_iou(self, box1, box2):
|
| 597 |
"""Compute Intersection over Union for bounding boxes."""
|
| 598 |
x1_1, y1_1, x2_1, y2_1 = box1
|
|
|
|
| 610 |
|
| 611 |
return inter_area / union_area if union_area > 0 else 0
|
| 612 |
|
| 613 |
+
def _merge_results(self, all_results):
|
| 614 |
+
"""Merge results from multiple OCR engines using weighted voting."""
|
| 615 |
+
if not all_results:
|
| 616 |
+
return []
|
| 617 |
+
|
| 618 |
+
# Use the engine with most detections as base
|
| 619 |
+
base_engine = max(all_results.keys(), key=lambda k: len(all_results[k]))
|
| 620 |
+
base_results = all_results[base_engine]
|
| 621 |
+
|
| 622 |
+
merged = []
|
| 623 |
|
| 624 |
+
for base_result in base_results:
|
| 625 |
+
base_box = base_result['bbox']
|
| 626 |
+
base_text = base_result['text']
|
| 627 |
+
base_conf = base_result['confidence']
|
| 628 |
+
|
| 629 |
+
# Find matching results from other engines
|
| 630 |
+
matches = [(base_text, base_conf, self.engine_weights.get(base_engine, 0.3))]
|
| 631 |
+
|
| 632 |
+
for engine_name, results in all_results.items():
|
| 633 |
+
if engine_name == base_engine:
|
| 634 |
+
continue
|
| 635 |
+
|
| 636 |
+
for result in results:
|
| 637 |
+
iou = self._compute_iou(base_box, result['bbox'])
|
| 638 |
+
if iou > 0.3: # Same text region
|
| 639 |
+
weight = self.engine_weights.get(engine_name, 0.2)
|
| 640 |
+
matches.append((result['text'], result['confidence'], weight))
|
| 641 |
+
|
| 642 |
+
# Vote on the best text
|
| 643 |
+
if len(matches) == 1:
|
| 644 |
+
final_text = base_text
|
| 645 |
+
final_conf = base_conf
|
| 646 |
+
else:
|
| 647 |
+
# Weighted voting
|
| 648 |
+
text_scores = {}
|
| 649 |
+
for text, conf, weight in matches:
|
| 650 |
+
if text not in text_scores:
|
| 651 |
+
text_scores[text] = 0
|
| 652 |
+
text_scores[text] += conf * weight
|
| 653 |
+
|
| 654 |
+
final_text = max(text_scores.keys(), key=lambda t: text_scores[t])
|
| 655 |
+
total_weight = sum(w for _, _, w in matches)
|
| 656 |
+
final_conf = min(0.99, text_scores[final_text] / total_weight if total_weight > 0 else 0.5)
|
| 657 |
+
|
| 658 |
+
merged.append({
|
| 659 |
+
'text': final_text,
|
| 660 |
+
'confidence': final_conf,
|
| 661 |
+
'bbox': base_box,
|
| 662 |
+
'engines_used': len(matches)
|
| 663 |
+
})
|
| 664 |
+
|
| 665 |
+
return merged
|
| 666 |
+
|
| 667 |
+
def extract_with_positions(self, image, min_confidence=0.3, use_ensemble=True):
|
| 668 |
+
"""Extract text with positions using ensemble of OCR engines."""
|
| 669 |
if isinstance(image, Image.Image):
|
| 670 |
+
img_array = np.array(image)
|
| 671 |
+
else:
|
| 672 |
+
img_array = image.copy()
|
| 673 |
+
|
| 674 |
+
all_results = {}
|
| 675 |
|
| 676 |
+
# Run EasyOCR (always available)
|
| 677 |
try:
|
| 678 |
+
easyocr_results = self._run_easyocr(img_array)
|
| 679 |
+
if easyocr_results:
|
| 680 |
+
all_results['easyocr'] = easyocr_results
|
| 681 |
except Exception as e:
|
| 682 |
print(f"EasyOCR error: {e}")
|
|
|
|
| 683 |
|
| 684 |
+
# Run PaddleOCR if available
|
| 685 |
+
if self.paddleocr_available and use_ensemble:
|
| 686 |
+
try:
|
| 687 |
+
paddleocr_results = self._run_paddleocr(img_array)
|
| 688 |
+
if paddleocr_results:
|
| 689 |
+
all_results['paddleocr'] = paddleocr_results
|
| 690 |
+
except Exception as e:
|
| 691 |
+
print(f"PaddleOCR error: {e}")
|
| 692 |
+
|
| 693 |
+
# Run Tesseract if available
|
| 694 |
+
if self.use_tesseract and use_ensemble:
|
| 695 |
+
try:
|
| 696 |
+
tesseract_results = self._run_tesseract(img_array)
|
| 697 |
+
if tesseract_results:
|
| 698 |
+
all_results['tesseract'] = tesseract_results
|
| 699 |
+
except Exception as e:
|
| 700 |
+
print(f"Tesseract error: {e}")
|
| 701 |
+
|
| 702 |
+
# Run TrOCR on detected boxes (needs boxes from other engines)
|
| 703 |
+
if self.trocr_available and use_ensemble and all_results:
|
| 704 |
+
try:
|
| 705 |
+
# Get boxes from best available engine
|
| 706 |
+
source_engine = max(all_results.keys(), key=lambda k: len(all_results[k]))
|
| 707 |
+
boxes = [r['bbox'] for r in all_results[source_engine]]
|
| 708 |
+
trocr_results = self._run_trocr(img_array, boxes)
|
| 709 |
+
if trocr_results:
|
| 710 |
+
all_results['trocr'] = trocr_results
|
| 711 |
+
except Exception as e:
|
| 712 |
+
print(f"TrOCR error: {e}")
|
| 713 |
+
|
| 714 |
+
# Merge results if ensemble, otherwise use EasyOCR only
|
| 715 |
+
if use_ensemble and len(all_results) > 1:
|
| 716 |
+
merged = self._merge_results(all_results)
|
| 717 |
+
elif 'easyocr' in all_results:
|
| 718 |
+
merged = all_results['easyocr']
|
| 719 |
+
else:
|
| 720 |
+
merged = []
|
| 721 |
+
|
| 722 |
+
# Filter by confidence
|
| 723 |
+
filtered = [r for r in merged if r['confidence'] >= min_confidence]
|
| 724 |
+
|
| 725 |
+
# If results are poor, try with preprocessing
|
| 726 |
+
avg_confidence = np.mean([r['confidence'] for r in filtered]) if filtered else 0
|
| 727 |
+
if len(filtered) < 3 or avg_confidence < 0.4:
|
| 728 |
+
try:
|
| 729 |
+
preprocessed = self._preprocess_image(image, method='enhance')
|
| 730 |
+
retry_results = self._run_easyocr(preprocessed)
|
| 731 |
+
retry_filtered = [r for r in retry_results if r['confidence'] >= min_confidence]
|
| 732 |
+
retry_avg = np.mean([r['confidence'] for r in retry_filtered]) if retry_filtered else 0
|
| 733 |
+
if retry_avg > avg_confidence:
|
| 734 |
+
filtered = retry_filtered
|
| 735 |
+
except Exception:
|
| 736 |
+
pass
|
| 737 |
|
| 738 |
# Sort by confidence (highest first)
|
| 739 |
+
filtered.sort(key=lambda x: x['confidence'], reverse=True)
|
| 740 |
|
| 741 |
+
return filtered
|
| 742 |
|
| 743 |
def postprocess_receipt(self, ocr_results):
|
| 744 |
"""Extract structured fields from OCR results with improved patterns."""
|
requirements.txt
CHANGED
|
@@ -2,6 +2,7 @@ torch>=2.0.0
|
|
| 2 |
torchvision>=0.15.0
|
| 3 |
transformers>=4.30.0
|
| 4 |
easyocr>=1.7.0
|
|
|
|
| 5 |
# Pin Gradio/gradio_client to a stable pair to avoid json_schema issues on Spaces
|
| 6 |
gradio==3.41.2
|
| 7 |
gradio_client==0.5.0
|
|
|
|
| 2 |
torchvision>=0.15.0
|
| 3 |
transformers>=4.30.0
|
| 4 |
easyocr>=1.7.0
|
| 5 |
+
paddleocr>=2.7.0
|
| 6 |
# Pin Gradio/gradio_client to a stable pair to avoid json_schema issues on Spaces
|
| 7 |
gradio==3.41.2
|
| 8 |
gradio_client==0.5.0
|