import os import streamlit as st from dotenv import load_dotenv from langchain_groq import ChatGroq from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain.chains import create_retrieval_chain from langchain_community.document_loaders import PyPDFDirectoryLoader load_dotenv() groq_api_key = os.getenv('GROQ_API_KEY') model = ChatGroq(groq_api_key=groq_api_key, model='Llama3-8b-8192') prompt = ChatPromptTemplate.from_template( """ Answer the questions based on the context only. Provide the answer accurately and briefly to the question {context} Question:{input} """ ) st.set_page_config(page_title = 'Simple RAG', page_icon = '⛓️', initial_sidebar_state = 'collapsed') st.sidebar.header('About') st.sidebar.markdown( """ Embeddings: Craig/paraphrase-MiniLM-L6-v2 VectorDB: FAISS LLM: Llama3-8b-8192 """ ) st.title('Simple RAG Application') st.warning('This is a simple RAG demonstration application. It uses open-source models for embeddings and \ inference. So it can be slow and ineffecient.', icon='⚠️') def create_vector_embedding(): if 'vectors' not in st.session_state: st.session_state.embeddings = HuggingFaceEmbeddings(model_name='Craig/paraphrase-MiniLM-L6-v2') st.session_state.loader = PyPDFDirectoryLoader('documents') st.session_state.docs = st.session_state.loader.load() st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:50]) st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) st.rerun() if 'vectors' not in st.session_state: st.write('The vector store database is not yet ready') if st.button('Create'): with st.spinner('Working...'): create_vector_embedding() if 'vectors' in st.session_state: user_prompt = st.text_input('Enter your query here') if user_prompt: document_chain = create_stuff_documents_chain(model, prompt) retriever = st.session_state.vectors.as_retriever() retrieval_chain = create_retrieval_chain(retriever, document_chain) response = retrieval_chain.invoke({'input': user_prompt}) st.write(response['answer']) with st.expander('Context'): for i, doc in enumerate(response['context']): st.write(doc.page_content) st.write('\n\n')