File size: 6,910 Bytes
22d2df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# -*- coding: utf-8 -*-
"""app.py

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1fuzwSkyjYRLfvGxQGclxwX0Y9OD2IK6s
"""

# app.py

# Step 1: Install necessary libraries
# This is handled by requirements.txt in Hugging Face Spaces,
# but you would run this line in a fresh environment:
# !pip install -q gradio transformers torch sentencepiece

# Step 2: Import libraries
import gradio as gr
import re
from transformers import pipeline

# --- Backend Logic ---

# Step 3: Load the Hugging Face Model
print("Loading Hugging Face model (google/flan-t5-small)... This may take a moment.")
text_generator = pipeline(
    "text2text-generation",
    model="google/flan-t5-small"
)
print("Model loaded successfully!")


def parse_chat_file(file_content):
    """
    A robust parser for both WhatsApp and Telegram text exports.
    """
    lines = file_content.split('\n')
    chat_data = []
    pattern = re.compile(
        r'^(?:\u200e)?\[?(\d{1,2}[/.]\d{1,2}[/.]\d{2,4}),?\s+(\d{1,2}:\d{2}(?::\d{2})?(?:\s*[AP]M)?)\]?\s*-\s*([^:]+):\s*(.*)',
        re.IGNORECASE
    )
    for line in lines:
        match = pattern.match(line)
        if match:
            sender, message = match.group(3), match.group(4)
            if "created this group" not in message and "added" not in message and "changed the subject" not in message:
                 chat_data.append(f"{sender}: {message}")
        elif chat_data and line.strip():
            chat_data[-1] += "\n" + line
    return "\n".join(chat_data) if chat_data else "Could not parse chat file."


def process_chat_request(user_question, chat_history, state_data):
    """
    The main function that handles the chat logic using the local Hugging Face model.
    """
    context_size = state_data.get("context_size")
    chat_content = state_data.get("chat_content")
    temperature = state_data.get("temperature")

    if not all([context_size, chat_content, temperature is not None]):
        raise gr.Error("Chat content or configuration is missing. Please restart by uploading a file.")
    if not user_question:
        raise gr.Error("Please enter a question.")

    context_to_use = chat_content[-int(context_size):]

    prompt = f"""
    Based on the following chat history, provide a detailed answer to the user's question.

    CONTEXT:
    ---
    {context_to_use}
    ---

    QUESTION: {user_question}

    ANSWER:
    """

    try:
        result = text_generator(
            prompt,
            max_length=300,
            num_beams=3,
            temperature=temperature
        )
        bot_response = result[0]['generated_text']
    except Exception as e:
        raise gr.Error(f"An error occurred with the model: {e}")

    chat_history.append((user_question, bot_response))
    return "", chat_history

# --- Gradio UI Definition ---

with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange", secondary_hue="orange"), title="Local Chat Analyzer") as demo:
    app_state = gr.State({})

    with gr.Column(visible=True) as welcome_page:
        gr.Markdown(
            """
            <div style='text-align: center; font-family: "Garamond", serif; padding-top: 30px;'>
                <h1 style='font-size: 3.5em;'>Local Chat Analyzer</h1>
                <p style='font-size: 1.5em; color: #555;'>Powered by a Hugging Face Model. No API key needed!</p>
            </div>
            """
        )
        gr.HTML(
            """
            <div style='text-align: center; padding: 20px;'>
                <img src='https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExd2Vjb3M2eGZzN2FkNWZpZzZ0bWl0c2JqZzZlMHVwZ2l4b2t0eXFpcyZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/YWjDA4k2n6d5Ew42zC/giphy.gif'
                     style='max-width: 350px; margin: auto; border-radius: 20px; box-shadow: 0 8px 16px rgba(0,0,0,0.1);' />
            </div>
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Accordion("How do I get my chat file?", open=False):
                    gr.Markdown("""
                    ### Exporting your WhatsApp Chat
                    1.  **On your phone**, open the WhatsApp chat you want to analyze.
                    2.  Tap the **three dots** (â‹®) in the top-right corner.
                    3.  Select **More** > **Export chat**.
                    4.  Choose **Without media**. This will create a smaller `.txt` file.
                    5.  Save the file to your phone or email it to yourself to access it on your computer.
                    6.  For more details, visit the [official WhatsApp Help Center](https://faq.whatsapp.com/1180414079177245/).
                    """)
                gr.Markdown("### 1. Upload Your Chat File")
                chat_file_upload = gr.File(label="Upload WhatsApp/Telegram .txt Export")
            with gr.Column():
                gr.Markdown("### 2. Customize Parameters")
                context_slider = gr.Slider(500, 20000, value=5000, step=500, label="Context Window Size (Characters)")
                temp_slider = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature (Creativity)")
        lets_chat_button = gr.Button("💬 Start Chatting 💬", variant="primary")

    with gr.Column(visible=False) as chat_page:
        gr.Markdown("<h1 style='text-align: center;'>Chat Analyzer</h1>")
        chatbot_ui = gr.Chatbot(height=600, bubble_full_width=False)
        with gr.Row():
            user_input_box = gr.Textbox(placeholder="Ask a question about your chat...", scale=5)
            submit_button = gr.Button("Send", variant="primary", scale=1)

    def go_to_chat(current_state, chat_file, context_size, temperature):
        if chat_file is None:
            raise gr.Error("A chat file must be uploaded.")
        with open(chat_file.name, 'r', encoding='utf-8') as f:
            content = f.read()
        parsed_content = parse_chat_file(content)
        if "Could not parse" in parsed_content:
            raise gr.Error("Failed to parse the chat file. Please check the format.")
        new_state = {
            "chat_content": parsed_content,
            "context_size": context_size,
            "temperature": temperature,
        }
        return (
            new_state,
            gr.Column(visible=False),
            gr.Column(visible=True)
        )

    lets_chat_button.click(
        fn=go_to_chat,
        inputs=[app_state, chat_file_upload, context_slider, temp_slider],
        outputs=[app_state, welcome_page, chat_page]
    )
    submit_button.click(
        fn=process_chat_request,
        inputs=[user_input_box, chatbot_ui, app_state],
        outputs=[user_input_box, chatbot_ui]
    )
    user_input_box.submit(
        fn=process_chat_request,
        inputs=[user_input_box, chatbot_ui, app_state],
        outputs=[user_input_box, chatbot_ui]
    )

if __name__ == "__main__":
    demo.launch()