Spaces:
Running
Running
File size: 13,424 Bytes
482611e 6f2096e c072f66 482611e c072f66 6f2096e d8f30c7 dbb5b76 d8f30c7 482611e 6f2096e fa1f0d6 482611e 6f2096e f79e46f 482611e 6f2096e 482611e d33fd9c 482611e c072f66 482611e 355e78e 482611e 355e78e 482611e 7708de2 482611e 7708de2 482611e c97d36a 482611e 7708de2 482611e eead613 482611e 3d1042f 482611e 7708de2 dce44ae eead613 43e1328 59ac7e2 482611e 355e78e 482611e dce44ae d00e0ec dce44ae 7af02d9 e98dedf 7af02d9 dce44ae 7af02d9 482611e 6f2096e 482611e 43e1328 482611e 43e1328 482611e 81966e1 482611e 6f2096e 482611e dce44ae 8bd985f dce44ae 2f6f974 dce44ae c072f66 dce44ae c072f66 482611e c072f66 482611e c072f66 81966e1 c072f66 eb781a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
from tempfile import TemporaryDirectory
import gradio as gr
import numpy as np
import pandas as pd
import spaces
import torch
from huggingface_hub import Repository
from rlgym_tools.rocket_league.misc.serialize import serialize_game_state, serialize_scoreboard, \
SB_GAME_TIMER_SECONDS, SB_BLUE_SCORE, SB_ORANGE_SCORE
from rlgym_tools.rocket_league.replays.convert import replay_to_rlgym
from rlgym_tools.rocket_league.replays.parsed_replay import ParsedReplay
from tqdm import trange, tqdm
os.chmod("/usr/local/lib/python3.10/site-packages/rlgym_tools/rocket_league/replays/carball", 0o755)
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
repo = Repository(local_dir="vortex-ngp", clone_from="Rolv-Arild/vortex-ngp", token=os.getenv("HF_TOKEN"))
repo.git_pull()
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL = torch.jit.load("vortex-ngp/vortex-ngp-daily-energy.pt", map_location=DEVICE)
MODEL.eval()
@spaces.GPU
@torch.inference_mode()
def infer(model, replay_file,
nullify_goal_difference=False,
ignore_ties=False):
num_outputs = 123
swap_team_idx = torch.arange(num_outputs)
mid = num_outputs // 2
swap_team_idx[mid:-1] = swap_team_idx[:mid]
swap_team_idx[:mid] += num_outputs // 2
replay = ParsedReplay.load(replay_file)
it = tqdm(replay_to_rlgym(replay), desc="Loading replay", total=len(replay.game_df))
replay_frames = []
serialized_states = []
serialized_scoreboards = []
seconds_remaining = []
for replay_frame in it:
replay_frames.append(replay_frame)
sstate = serialize_game_state(replay_frame.state)
sscoreboard = serialize_scoreboard(replay_frame.scoreboard)
serialized_states.append(sstate)
serialized_scoreboards.append(sscoreboard)
seconds_remaining.append(replay_frame.episode_seconds_remaining)
serialized_states = torch.from_numpy(np.stack(serialized_states))
serialized_scoreboards = torch.from_numpy(np.stack(serialized_scoreboards))
seconds_remaining = torch.tensor(seconds_remaining)
it.close()
timer = serialized_scoreboards[:, SB_GAME_TIMER_SECONDS].clone()
is_ot = timer > 450
ot_time_remaining = seconds_remaining[is_ot]
if len(ot_time_remaining) > 0:
ot_timer = ot_time_remaining[0] - ot_time_remaining
timer[is_ot] = -ot_timer # Negate to indicate overtime
goal_diff = serialized_scoreboards[:, SB_BLUE_SCORE] - serialized_scoreboards[:, SB_ORANGE_SCORE]
goal_diff_diff = goal_diff.diff(prepend=torch.Tensor([0]))
bs = 900
predictions = []
it = trange(len(serialized_states), desc="Running model")
for i in range(0, len(serialized_states), bs):
batch = (serialized_states[i:i + bs].clone().to(DEVICE),
serialized_scoreboards[i:i + bs].clone().to(DEVICE))
if nullify_goal_difference or ignore_ties:
batch[1][:, SB_BLUE_SCORE] = 0
batch[1][:, SB_ORANGE_SCORE] = 0
if ignore_ties:
batch[1][:, SB_GAME_TIMER_SECONDS] = float("inf")
out = model(*batch)
it.update(len(batch[0]))
predictions.append(out)
predictions = torch.cat(predictions, dim=0)
probs = predictions.softmax(dim=-1)
bin_seconds = torch.linspace(0, 60, num_outputs // 2)
class_names = [
f"{t}: {s:g}s" for t in ["Blue", "Orange"]
for s in bin_seconds.tolist()
]
class_names.append("Tie")
preds = probs.cpu().numpy()
preds = pd.DataFrame(data=preds, columns=class_names)
preds["Blue"] = preds[[c for c in preds.columns if c.startswith("Blue")]].sum(axis=1)
preds["Orange"] = preds[[c for c in preds.columns if c.startswith("Orange")]].sum(axis=1)
preds["Timer"] = timer
preds["Goal"] = goal_diff_diff
preds["Touch"] = ""
pid_to_name = {int(p["unique_id"]): p["name"]
for p in replay.metadata["players"]
if p["unique_id"] in replay.player_dfs}
for i, replay_frame in enumerate(replay_frames):
state = replay_frame.state
for aid, car in state.cars.items():
if car.ball_touches > 0:
team = "Blue" if car.is_blue else "Orange"
name = pid_to_name[aid]
name = name.replace("|", " ") # Replace pipe with space to not conflict with sep
if preds.at[i, "Touch"] != "":
preds.at[i, "Touch"] += "|"
preds.at[i, "Touch"] += f"{team}|{name}"
# Sort columns
main_cols = ["Timer", "Blue", "Orange", "Tie", "Goal", "Touch"]
preds = preds[main_cols + [c for c in preds.columns if c not in main_cols]]
# Set index name
preds.index.name = "Frame"
remove_ties_mask = is_ot if not ignore_ties else torch.ones(len(preds), dtype=torch.bool)
remove_ties_mask = remove_ties_mask.numpy()
if remove_ties_mask.any():
tie_probs = preds.loc[remove_ties_mask, "Tie"]
q = (1 - tie_probs)
for c in preds.columns:
if c.startswith("Blue") or c.startswith("Orange"):
preds.loc[remove_ties_mask, c] /= q
if ignore_ties:
preds = preds.drop("Tie", axis=1)
else:
preds.loc[remove_ties_mask, "Tie"] = 0.0
return preds
def plot_plotly(preds: pd.DataFrame):
import plotly.graph_objects as go
preds_df = preds.drop(["Touch", "Timer", "Goal"], axis=1) * 100
timer = preds["Timer"]
fig = go.Figure()
def format_timer(t):
sign = '+' if t < 0 else ''
return f"{sign}{abs(t) // 60:01.0f}:{abs(t) % 60:02.0f}"
timer_text = [format_timer(t.item()) for t in timer.values]
hovertemplate = '<b>Frame %{x}</b><br>Prob: %{y:.3g}%<br>Timer: %{customdata}<extra></extra>'
# Add traces for Blue, Orange, and Tie probabilities from the DataFrame
fig.add_trace(
go.Scatter(x=preds_df.index, y=preds_df["Blue"],
mode='lines', name='Blue', line=dict(color='blue'),
customdata=timer_text, hovertemplate=hovertemplate))
fig.add_trace(
go.Scatter(x=preds_df.index, y=preds_df["Orange"],
mode='lines', name='Orange', line=dict(color='orange'),
customdata=timer_text, hovertemplate=hovertemplate))
if "Tie" in preds.columns:
fig.add_trace(
go.Scatter(x=preds_df.index, y=preds_df["Tie"],
mode='lines', name='Tie', line=dict(color='gray'),
customdata=timer_text, hovertemplate=hovertemplate))
# Add the horizontal line at y=50%
fig.add_hline(y=50, line_dash="dash", line_color="black", name="50% Probability")
# Add goal indicators
b = o = 0
for goal_frame in preds["Goal"].index[preds["Goal"] != 0]:
if preds["Goal"][goal_frame] > 0:
b += 1
elif preds["Goal"][goal_frame] < 0:
o += 1
fig.add_vline(x=goal_frame, line_dash="dash", line_color="red",
annotation_text=f"{b}-{o}", annotation_position="top right")
# Add touch indicators as points
touches = {}
for touch_frame in preds.index[preds["Touch"] != ""]:
teams_players = preds.at[touch_frame, "Touch"].split('|')
for team, player in zip(teams_players[::2], teams_players[1::2]):
team = team.strip()
player = player.strip()
touches.setdefault(team, []).append((touch_frame, player))
for team in "Blue", "Orange":
team_touches = touches.get(team, [])
if not team_touches:
continue
x = [t[0] for t in team_touches]
y = [preds_df.at[t[0], team] for t in team_touches]
touch_players = [t[1] for t in team_touches]
custom_data = [f"{timer_text[f]}<br>Touch by {p}"
for f, p in zip(x, touch_players)]
fig.add_trace(
go.Scatter(x=x, y=y,
mode='markers',
name=f'{team} touches',
marker=dict(size=5, color=team.lower(), symbol='circle-open-dot'),
customdata=custom_data,
hovertemplate=hovertemplate
))
# Define the formatting function for the secondary x-axis labels
def format_timer_ticks(x):
"""Converts a frame number to a formatted time string."""
x = int(x)
# Ensure the index is within the bounds of the timer series
x = max(0, min(x, len(timer) - 1))
# Calculate the time value
t = timer.iloc[x] * 300
# Format the time as MM:SS, with a '+' for negative values (representing overtime)
sign = '+' if t < 0 else ''
minutes = int(abs(t) // 60)
seconds = int(abs(t) % 60)
return f"{sign}{minutes:01}:{seconds:02}"
# Generate positions and labels for the secondary axis ticks
# Creates 10 evenly spaced ticks for clarity
tick_positions = np.linspace(0, len(preds_df) - 1, 10)
tick_labels = [format_timer_ticks(val) for val in tick_positions]
# Configure the figure's layout, titles, and both x-axes
fig.update_layout(
title="Interactive Probability Plot",
xaxis=dict(
title="Frame",
gridcolor='#e5e7eb' # A light gray grid for a modern look
),
yaxis=dict(
title="Probability",
gridcolor='#e5e7eb'
),
# --- Secondary X-Axis Configuration ---
xaxis2=dict(
title="Timer",
overlaying='x', # This makes it a secondary axis
side='top', # Position it at the top
tickmode='array',
tickvals=tick_positions,
ticktext=tick_labels
),
legend=dict(x=0.01, y=0.99, yanchor="top", xanchor="left"), # Position legend inside plot
plot_bgcolor='white' # A clean white background
)
# fig.show()
return fig
DESCRIPTION = """
# Next Goal Predictor
Upload a replay file to get a plot of the next goal prediction.
The model is trained on about 14 000 hours of SSL and RLCS replays in 1v1, 2v2, and 3v3 using [this dataset](https://www.kaggle.com/datasets/rolvarild/high-level-rocket-league-replay-dataset).<br>
It predicts the probability that each team will score at 1 second intervals up to 60+ seconds.
It also predicts ties (ball hitting the ground at 0s)<br>
The plot only shows the totals for each team, but you can download the full predictions if you want.
""".strip()
RADIO_OPTIONS = ["Default", "Nullify goal difference", "Ignore ties"]
RADIO_INFO = """
- **Default**: Uses the model as it is trained, with no modifications.
- **Nullify goal difference**: Makes the model think the goal difference is always 0, so it doesn't have a bias towards one team.
- **Ignore ties**: Makes the model pretend every situation is an overtime (e.g. ties are impossible).
""".strip()
with TemporaryDirectory() as temp_dir:
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
# Use gr.Column to stack components vertically
with gr.Column():
file_input = gr.File(label="Upload Replay File", type="filepath", file_types=[".replay"])
checkboxes = gr.Radio(label="Options", choices=RADIO_OPTIONS, type="index", value=RADIO_OPTIONS[0],
info=RADIO_INFO)
submit_button = gr.Button("Generate Predictions")
plot_output = gr.Plot(label="Predictions")
download_button = gr.DownloadButton("Download Predictions", visible=False)
def make_plot(replay_file, radio_option, progress=gr.Progress(track_tqdm=True)):
# Make plot on button click
nullify_goal_difference = radio_option == 1
ignore_ties = radio_option == 2
print(f"Processing file: {replay_file}")
replay_stem = os.path.splitext(os.path.basename(replay_file))[0]
postfix = ""
if nullify_goal_difference:
postfix += "_nullify_goal_difference"
elif ignore_ties:
postfix += "_ignore_ties"
preds_file = os.path.join(temp_dir, f"predictions_{replay_stem}{postfix}.csv")
if os.path.exists(preds_file):
print(f"Predictions file already exists: {preds_file}")
preds = pd.read_csv(preds_file, dtype={"Touch": str})
preds["Touch"] = preds["Touch"].fillna("")
else:
preds = infer(MODEL, replay_file,
nullify_goal_difference=nullify_goal_difference,
ignore_ties=ignore_ties)
plt = plot_plotly(preds)
print(f"Plot generated for file: {replay_file}")
preds.to_csv(preds_file)
if len(os.listdir(temp_dir)) > 100:
# Delete least recent file
oldest_file = min(os.listdir(temp_dir), key=lambda f: os.path.getctime(os.path.join(temp_dir, f)))
os.remove(os.path.join(temp_dir, oldest_file))
return plt, gr.DownloadButton(value=preds_file, visible=True)
submit_button.click(
fn=make_plot,
inputs=[file_input, checkboxes],
outputs=[plot_output, download_button],
show_progress="full",
)
demo.queue(default_concurrency_limit=None)
demo.launch()
|