Spaces:
Runtime error
Runtime error
File size: 25,200 Bytes
86fd3c3 a4ada39 3ebe7c1 86fd3c3 b0ca692 cd5f66f 86fd3c3 a64355d 86fd3c3 9965eef 86fd3c3 5536134 86fd3c3 094e088 86fd3c3 2d98661 86fd3c3 b0ca692 86fd3c3 b0ca692 86fd3c3 7e02716 86fd3c3 b0ca692 86fd3c3 dc64b01 b0ca692 cd5f66f b0ca692 cd5f66f 86fd3c3 73ce5b8 86fd3c3 73ce5b8 b0ca692 86fd3c3 b0ca692 86fd3c3 b0ca692 2876c46 b0ca692 86fd3c3 b0ca692 a4ada39 86fd3c3 b0ca692 86fd3c3 b0ca692 86fd3c3 b0ca692 86fd3c3 b0ca692 86fd3c3 b0ca692 86fd3c3 b0ca692 86fd3c3 2d98661 b0ca692 86fd3c3 a4ada39 b0ca692 3ebe7c1 86fd3c3 a4ada39 b0ca692 b789119 86fd3c3 094e088 86fd3c3 dff1399 d470fba 2876c46 b0ca692 86fd3c3 a4ada39 b0ca692 86fd3c3 b0ca692 86fd3c3 b0ca692 86fd3c3 98587f6 86fd3c3 98587f6 86fd3c3 a4ada39 86fd3c3 a4ada39 b0ca692 86fd3c3 b0ca692 86fd3c3 b0ca692 86fd3c3 b0ca692 5e4dd72 86fd3c3 9f543c6 86fd3c3 9f543c6 b4df8a2 86fd3c3 b0ca692 86fd3c3 6424c78 1a53308 86fd3c3 b0ca692 2d98661 5e4dd72 b0ca692 5e4dd72 3d701d8 b0ca692 86fd3c3 b0ca692 86fd3c3 b0ca692 5536134 86fd3c3 b0ca692 86fd3c3 b0ca692 86fd3c3 b0ca692 42c9703 b0ca692 86fd3c3 ba6916c 86fd3c3 a4ada39 86fd3c3 ba6916c 86fd3c3 a4ada39 86fd3c3 ba6916c 86fd3c3 ba6916c b0ca692 ba6916c 86fd3c3 ba6916c 86fd3c3 ba6916c 86fd3c3 b0ca692 3d701d8 144fbb5 97681f5 f4673b6 73ce5b8 ddfd6c7 144fbb5 86fd3c3 73ce5b8 86fd3c3 144fbb5 3d701d8 3ebe7c1 3d701d8 86fd3c3 144fbb5 97681f5 144fbb5 b0ca692 97681f5 f4673b6 6424c78 f4673b6 5754acb 73ce5b8 3ebe7c1 86fd3c3 b0ca692 144fbb5 86fd3c3 b0ca692 144fbb5 86fd3c3 44c5824 b0ca692 86fd3c3 144fbb5 b0ca692 3ebe7c1 3d701d8 144fbb5 86fd3c3 144fbb5 b0ca692 fa3a182 144fbb5 26d5a6c 86fd3c3 b0ca692 26d5a6c 674ebda 144fbb5 3d701d8 717d87a 86fd3c3 2f64ddc 717d87a 86fd3c3 717d87a 86fd3c3 717d87a 86fd3c3 717d87a c2803a0 73ce5b8 c2803a0 717d87a b0ca692 86fd3c3 b0ca692 33ac7b1 3d701d8 b0ca692 73ce5b8 b0ca692 094e088 73ce5b8 3d701d8 86fd3c3 de3c062 86fd3c3 73ce5b8 b0ca692 3ebe7c1 73ce5b8 3ebe7c1 86fd3c3 73ce5b8 3ebe7c1 86fd3c3 73ce5b8 3ebe7c1 73ce5b8 3ebe7c1 73ce5b8 5bc74c0 3ebe7c1 86fd3c3 73ce5b8 3ebe7c1 86fd3c3 73ce5b8 3ebe7c1 86fd3c3 73ce5b8 3ebe7c1 86fd3c3 73ce5b8 3f06d5a 73ce5b8 5d85f5b 73ce5b8 5d85f5b 73ce5b8 de3c062 73ce5b8 5d85f5b 73ce5b8 5d85f5b 73ce5b8 5d85f5b de3c062 5d85f5b 73ce5b8 7270531 73ce5b8 7270531 73ce5b8 7270531 73ce5b8 5d85f5b 73ce5b8 5d85f5b 73ce5b8 de3c062 73ce5b8 de3c062 73ce5b8 5d85f5b 3d701d8 73ce5b8 3d701d8 5d85f5b de3c062 5d85f5b b0ca692 5d85f5b b0ca692 3d701d8 de3c062 3d701d8 86fd3c3 3ebe7c1 86fd3c3 3ebe7c1 86fd3c3 3ebe7c1 b0ca692 69e8901 26d5a6c 3dfab37 26d5a6c 69e8901 5e4dd72 86fd3c3 69e8901 5e4dd72 86fd3c3 69e8901 5e4dd72 b0ca692 3ebe7c1 86fd3c3 3ebe7c1 86fd3c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
import logging
import os
import shutil
import tempfile
import traceback
from contextlib import asynccontextmanager
from functools import lru_cache
from typing import Any, AsyncGenerator, Dict, List, Optional
import aiofiles
import faiss
import gcsfs
import polars as pl
import torch
import zipfile
from fastapi import Depends, FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, PrivateAttr
from pydantic_settings import BaseSettings as SettingsBase
from sentence_transformers import CrossEncoder
from starlette.concurrency import run_in_threadpool
from tqdm import tqdm
from transformers import ( # Transformers for LLM pipeline
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
pipeline,
T5ForConditionalGeneration,
T5Tokenizer,
MT5ForConditionalGeneration, MT5TokenizerFast
)
# LangChain imports for RAG
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
from langchain.schema import BaseRetriever, Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_transformers import EmbeddingsRedundantFilter
from langchain_community.vectorstores import FAISS
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
# Project-specific imports
from app.rag import build_indexes, HybridRetriever
# ---------------------------------------------------------------------------- #
# Settings #
# ---------------------------------------------------------------------------- #
class Settings(SettingsBase):
"""
Configuration settings loaded from environment or .env file.
"""
# Data sources
parquet_path: str = "gs://mda_kul_project/data/consolidated_clean_pred.parquet"
whoosh_dir: str = "gs://mda_kul_project/whoosh_index"
vectorstore_path: str = "gs://mda_kul_project/vectorstore_index"
# Model names
embedding_model: str = "sentence-transformers/LaBSE"
llm_model: str = "google/mt5-base"
cross_encoder_model: str = "cross-encoder/mmarco-mMiniLMv2-L12-H384-v1"
# RAG parameters
chunk_size: int = 750
chunk_overlap: int = 100
hybrid_k: int = 4
assistant_role: str = (
"You are a knowledgeable project analyst. You have access to the following retrieved document snippets."
)
skip_warmup: bool = True
# CORS
allowed_origins: List[str] = ["*"]
class Config:
env_file = ".env"
# Instantiate settings and logger
settings = Settings()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Pre-instantiate the embedding model for reuse
EMBEDDING = HuggingFaceEmbeddings(
model_name=settings.embedding_model,
model_kwargs={"trust_remote_code": True},
)
@lru_cache(maxsize=256)
def embed_query_cached(query: str) -> List[float]:
"""Cache embedding vectors for repeated queries."""
return EMBEDDING.embed_query(query.strip().lower())
# ---------------------------------------------------------------------------- #
# Application Lifespan #
# ---------------------------------------------------------------------------- #
app = FastAPI(lifespan=lambda app: lifespan(app))
@asynccontextmanager
async def lifespan(app: FastAPI) -> AsyncGenerator[None, None]:
"""
Startup: initialize RAG chain, embeddings, memory, indexes, and load data.
Shutdown: clean up resources if needed.
"""
# 1) Initialize document compressor
logger.info("Initializing Document Compressor")
compressor = DocumentCompressorPipeline(
transformers=[EmbeddingsRedundantFilter(embeddings=EMBEDDING)]
)
# 2) Initialize and quantize Cross-Encoder
logger.info("Initializing Cross-Encoder")
cross_encoder = CrossEncoder(settings.cross_encoder_model)
cross_encoder.model = torch.quantization.quantize_dynamic(
cross_encoder.model,
{torch.nn.Linear},
dtype=torch.qint8,
)
logger.info("Cross-Encoder quantized")
# 3) Build Seq2Seq pipeline and wrap in LangChain
logger.info("Initializing LLM pipeline")
tokenizer = MT5TokenizerFast.from_pretrained(settings.llm_model)
model = MT5ForConditionalGeneration.from_pretrained(settings.llm_model)
model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
# assemble the pipeline
gen_pipe = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
device=-1,
max_new_tokens=256,
do_sample=True,
temperature=0.8,
top_k=30,
top_p=0.95,
repetition_penalty=1.2,
no_repeat_ngram_size=3,
use_cache=True,
)
llm = HuggingFacePipeline(pipeline=gen_pipe)
# 4) Initialize conversation memory
logger.info("Initializing Conversation Memory")
memory = ConversationBufferWindowMemory(
memory_key="chat_history",
input_key="question",
output_key="answer",
return_messages=True,
k=5,
)
# 5) Build or load indexes for vectorstore and Whoosh
logger.info("Building or loading indexes")
vs, ix = await build_indexes(
settings.parquet_path,
settings.vectorstore_path,
settings.whoosh_dir,
settings.chunk_size,
settings.chunk_overlap,
None,
)
retriever = HybridRetriever(vs=vs, ix=ix, compressor=compressor, cross_encoder=cross_encoder)
# 6) Define prompt template for RAG chain
prompt = PromptTemplate.from_template(
f"{settings.assistant_role}\n"
"{context}\n"
"User Question:\n{question}\n"
"Answer:" # Rules are embedded in assistant_role
)
# 7) Instantiate the conversational retrieval chain
logger.info("Initializing Retrieval Chain")
app.state.rag_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
combine_docs_chain_kwargs={"prompt": prompt},
return_source_documents=True,
)
# Optional warmup
if not settings.skip_warmup:
logger.info("Warming up RAG chain")
await app.state.rag_chain.ainvoke({"question": "warmup"})
# 8) Load project data into Polars DataFrame
logger.info("Loading Parquet data from GCS")
fs = gcsfs.GCSFileSystem()
with fs.open(settings.parquet_path, "rb") as f:
df = pl.read_parquet(f)
# Cast id to integer and lowercase key columns for filtering
df = df.with_columns(
pl.col("id").cast(pl.Int64),
*(pl.col(col).str.to_lowercase().alias(f"_{col}_lc") for col in [
"title", "status", "legalBasis", "fundingScheme"
])
)
# Cache DataFrame and filter values in app state
app.state.df = df
app.state.statuses = df["_status_lc"].unique().to_list()
app.state.legal_bases = df["_legalBasis_lc"].unique().to_list()
app.state.orgs_list = df.explode("list_name")["list_name"].unique().to_list()
app.state.countries_list = df.explode("list_country")["list_country"].unique().to_list()
yield # Application is ready
# ---------------------------------------------------------------------------- #
# App Setup #
# ---------------------------------------------------------------------------- #
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=settings.allowed_origins,
allow_methods=["*"],
allow_headers=["*"],
)
# ---------------------------------------------------------------------------- #
# Pydantic Models #
# ---------------------------------------------------------------------------- #
class RAGRequest(BaseModel):
session_id: Optional[str] = None # Optional conversation ID
query: str # User's query text
class RAGResponse(BaseModel):
answer: str
source_ids: List[str]
# ---------------------------------------------------------------------------- #
# RAG Endpoint #
# ---------------------------------------------------------------------------- #
def rag_chain_depender(app: FastAPI = Depends(lambda: app)) -> Any:
"""
Dependency injector to retrieve the initialized RAG chain from the application state.
Raises HTTPException if chain is not yet initialized.
"""
chain = app.state.rag_chain
if chain is None:
# If the chain isn't set up, respond with a 500 server error
raise HTTPException(status_code=500, detail="RAG chain not initialized")
return chain
@app.post("/api/rag", response_model=RAGResponse)
async def ask_rag(
req: RAGRequest,
rag_chain = Depends(rag_chain_depender)
):
"""
Endpoint to process a RAG-based query.
1. Logs start of processing.
2. Invokes the RAG chain asynchronously with the user question.
3. Validates returned result structure and extracts answer + source IDs.
4. Handles any exceptions by logging traceback and returning a JSON error.
"""
logger.info("Starting to answer RAG query")
try:
# Asynchronously invoke the chain to get answer + docs
result = await rag_chain.ainvoke({"question": req.query})
logger.info("RAG results retrieved")
# Validate that the chain returned expected dict
if not isinstance(result, dict):
# Try sync call for debugging
result2 = await rag_chain.acall({"question": req.query})
raise ValueError(
f"Expected dict from chain, got {type(result)}; "
f"acall() returned {type(result2)}"
)
# Extract answer text and source document IDs
answer = result.get("answer")
docs = result.get("source_documents", [])
sources = [d.metadata.get("id", "") for d in docs]
return RAGResponse(answer=answer, source_ids=sources)
except Exception as e:
# Log full stacktrace to container logs
traceback.print_exc()
# Return HTTP 500 with error detail
raise HTTPException(status_code=500, detail=str(e))
# ---------------------------------------------------------------------------- #
# Data Endpoints #
# ---------------------------------------------------------------------------- #
@app.get("/api/projects")
def get_projects(
page: int = 0,
limit: int = 10,
search: str = "",
status: str = "",
legalBasis: str = "",
organization: str = "",
country: str = "",
fundingScheme: str = "",
proj_id: str = "",
topic: str = "",
sortOrder: str = "desc",
sortField: str = "startDate",
):
"""
Paginated project listing with optional filtering and sorting.
Query Parameters:
- page: zero-based page index
- limit: number of items per page
- search: substring search in project title
- status, legalBasis, organization, country, fundingScheme: filters
- proj_id: exact project ID filter
- topic: filter by EuroSciVoc topic
- sortOrder: 'asc' or 'desc'
- sortField: field name to sort by (fallback to startDate)
Returns a list of project dicts including explanations and publication counts.
"""
df: pl.DataFrame = app.state.df
start = page * limit
sel = df
# Apply text and field filters as needed
if search:
sel = sel.filter(pl.col("_title_lc").str.contains(search.lower()))
if status:
sel = sel.filter(
pl.col("status").is_null() if status == "UNKNOWN"
else pl.col("_status_lc") == status.lower()
)
if legalBasis:
sel = sel.filter(pl.col("_legalBasis_lc") == legalBasis.lower())
if organization:
sel = sel.filter(pl.col("list_name").list.contains(organization))
if country:
sel = sel.filter(pl.col("list_country").list.contains(country))
if fundingScheme:
sel = sel.filter(pl.col("_fundingScheme_lc").str.contains(fundingScheme.lower()))
if proj_id:
sel = sel.filter(pl.col("id") == int(proj_id))
if topic:
sel = sel.filter(pl.col("list_euroSciVocTitle").list.contains(topic))
# Base columns to return
base_cols = [
"id","title","status","startDate","endDate","ecMaxContribution","acronym",
"legalBasis","objective","frameworkProgramme","list_euroSciVocTitle",
"list_euroSciVocPath","totalCost","list_isPublishedAs","fundingScheme"
]
# Append top feature & SHAP value columns
for i in range(1,7):
base_cols += [f"top{i}_feature", f"top{i}_shap"]
base_cols += ["predicted_label","predicted_prob"]
# Determine sort direction and safe field
sort_desc = sortOrder.lower() == "desc"
sortField = sortField if sortField in df.columns else "startDate"
# Query, sort, slice, and collect to Python dicts
rows = (
sel.sort(sortField, descending=sort_desc)
.slice(start, limit)
.select(base_cols)
.to_dicts()
)
projects = []
for row in rows:
# Reformat SHAP explanations into list of dicts
explanations = []
for i in range(1,7):
feat = row.pop(f"top{i}_feature", None)
shap = row.pop(f"top{i}_shap", None)
if feat is not None and shap is not None:
explanations.append({"feature": feat, "shap": shap})
row["explanations"] = explanations
# Aggregate publications counts
raw_pubs = row.pop("list_publications", []) or []
pub_counts: Dict[str,int] = {}
for p in raw_pubs:
pub_counts[p] = pub_counts.get(p, 0) + 1
row["publications"] = pub_counts
row["startDate"] = row["startDate"].date().isoformat() if row["startDate"] else None
row["endDate"] = row["endDate"].date().isoformat() if row["endDate"] else None
projects.append(row)
return projects
@app.get("/api/filters")
def get_filters(request: Request):
"""
Retrieve available filter options based on current dataset and optional query filters.
Returns JSON with lists for statuses, legalBases, organizations, countries, and fundingSchemes.
"""
df = app.state.df
params = request.query_params
# Dynamically filter df based on provided params
if s := params.get("status"):
df = df.filter(pl.col("status").is_null() if s == "UNKNOWN"
else pl.col("_status_lc") == s.lower())
if lb := params.get("legalBasis"):
df = df.filter(pl.col("_legalBasis_lc") == lb.lower())
if org := params.get("organization"):
df = df.filter(pl.col("list_name").list.contains(org))
if c := params.get("country"):
df = df.filter(pl.col("list_country").list.contains(c))
if t := params.get("topic"):
df = df.filter(pl.col("list_euroSciVocTitle").list.contains(t))
if fs := params.get("fundingScheme"):
df = df.filter(pl.col("_fundingScheme_lc").str.contains(fs.lower()))
if search := params.get("search"):
df = df.filter(pl.col("_title_lc").str.contains(search.lower()))
def normalize(vals):
# Map None to "UNKNOWN" and return sorted unique list
return sorted({("UNKNOWN" if v is None else v) for v in vals})
return {
"statuses": normalize(df["status"].to_list()),
"legalBases": normalize(df["legalBasis"].to_list()),
"organizations": normalize(df["list_name"].explode().to_list()),
"countries": normalize(df["list_country"].explode().to_list()),
"fundingSchemes": normalize(df["fundingScheme"].to_list()),
"topics": normalize(df["list_euroSciVocTitle"].explode().to_list()),
}
@app.get("/api/stats")
def get_stats(request: Request):
"""
Compute various statistics on projects with optional filters for status,
legal basis, funding, start/end years, etc. Returns a dict of chart data.
"""
df = app.state.df
lf = df.lazy()
params = request.query_params
# Apply filters
if s := params.get("status"):
lf = lf.filter(pl.col("_status_lc") == s.lower())
df = df.filter(pl.col("_status_lc") == s.lower())
if lb := params.get("legalBasis"):
lf = lf.filter(pl.col("_legalBasis_lc") == lb.lower())
df = df.filter(pl.col("_legalBasis_lc") == lb.lower())
if org := params.get("organization"):
lf = lf.filter(pl.col("list_name").list.contains(org))
df = df.filter(pl.col("list_name").list.contains(org))
if c := params.get("country"):
lf = lf.filter(pl.col("list_country").list.contains(c))
df = df.filter(pl.col("list_country").list.contains(c))
if eu := params.get("topic"):
lf = lf.filter(pl.col("list_euroSciVocTitle").list.contains(eu))
df = df.filter(pl.col("list_euroSciVocTitle").list.contains(eu))
if fs := params.get("fundingScheme"):
lf = lf.filter(pl.col("_fundingScheme_lc").str.contains(fs.lower()))
df = df.filter(pl.col("_fundingScheme_lc").str.contains(fs.lower()))
if mn := params.get("minFunding"):
lf = lf.filter(pl.col("ecMaxContribution") >= int(mn))
df = df.filter(pl.col("ecMaxContribution") >= int(mn))
if mx := params.get("maxFunding"):
lf = lf.filter(pl.col("ecMaxContribution") <= int(mx))
df = df.filter(pl.col("ecMaxContribution") <= int(mx))
if y1 := params.get("minYear"):
lf = lf.filter(pl.col("startDate").dt.year() >= int(y1))
df = df.filter(pl.col("startDate").dt.year() >= int(y1))
if y2 := params.get("maxYear"):
lf = lf.filter(pl.col("startDate").dt.year() <= int(y2))
df = df.filter(pl.col("startDate").dt.year() <= int(y2))
if ye1 := params.get("minEndYear"):
lf = lf.filter(pl.col("endDate").dt.year() >= int(ye1))
df = df.filter(pl.col("endDate").dt.year() >= int(ye1))
if ye2 := params.get("maxEndYear"):
lf = lf.filter(pl.col("endDate").dt.year() <= int(ye2))
df = df.filter(pl.col("endDate").dt.year() <= int(ye2))
# Helper to drop any None/null entries
def clean_data(labels: list, values: list) -> tuple[list, list]:
pairs = [(l, v) for l, v in zip(labels, values) if l is not None and v is not None]
if not pairs:
return [], []
lbls, vals = zip(*pairs)
return list(lbls), list(vals)
# 1) Projects per Year (Line)
yearly = (
lf.select(pl.col("startDate").dt.year().alias("year"))
.group_by("year")
.agg(pl.count().alias("count"))
.sort("year")
.collect()
)
years = yearly["year"].to_list()
year_counts = yearly["count"].to_list()
# fixed bucket order
size_order = ["<100 K","100 K–500 K","500 K–1 M","1 M–5 M","5 M–10 M","≥10 M"]
# 2) Project-Size Distribution (Bar)
size_buckets = (
df.with_columns(
pl.when(pl.col("totalCost") < 100_000).then(pl.lit("<100 K"))
.when(pl.col("totalCost") < 500_000).then(pl.lit("100 K–500 K"))
.when(pl.col("totalCost") < 1_000_000).then(pl.lit("500 K–1 M"))
.when(pl.col("totalCost") < 5_000_000).then(pl.lit("1 M–5 M"))
.when(pl.col("totalCost") < 10_000_000).then(pl.lit("5 M–10 M"))
.otherwise(pl.lit("≥10 M"))
.alias("size_range")
)
.group_by("size_range")
.agg(pl.count().alias("count"))
.with_columns(
pl.col("size_range")
.replace_strict(size_order, list(range(len(size_order))))
.alias("order")
)
.sort("order")
)
size_labels = size_buckets["size_range"].to_list()
size_counts = size_buckets["count"].to_list()
# 3) Scheme Frequency (Bar)
scheme_counts_df = (
df.with_columns(
pl.col("fundingScheme")
.cast(pl.List(pl.Utf8))
.alias("fundingScheme")
)
.group_by("fundingScheme")
.agg(pl.count().alias("count"))
.sort("count", descending=True)
.head(10)
)
scheme_labels = scheme_counts_df["fundingScheme"].to_list()
scheme_values = scheme_counts_df["count"].to_list()
# 4) Top 10 Macro Topics by EC Contribution (Bar)
top_topics = (
df.explode("list_euroSciVocTitle")
.group_by("list_euroSciVocTitle")
.agg(pl.col("ecMaxContribution").sum().alias("total_ec"))
.sort("total_ec", descending=True)
.head(10)
)
topic_labels = top_topics["list_euroSciVocTitle"].to_list()
topic_values = (top_topics["total_ec"] / 1e6).round(1).to_list()
# 5) Projects by Funding Range (Pie)
fund_range = (
df.with_columns(
pl.when(pl.col("ecMaxContribution") < 100_000).then(pl.lit("<100 K"))
.when(pl.col("ecMaxContribution") < 500_000).then(pl.lit("100 K–500 K"))
.when(pl.col("ecMaxContribution") < 1_000_000).then(pl.lit("500 K–1 M"))
.when(pl.col("ecMaxContribution") < 5_000_000).then(pl.lit("1 M–5 M"))
.when(pl.col("ecMaxContribution") < 10_000_000).then(pl.lit("5 M–10 M"))
.otherwise(pl.lit("≥10 M"))
.alias("funding_range")
)
.group_by("funding_range")
.agg(pl.count().alias("count"))
.with_columns(
pl.col("funding_range")
.replace_strict(size_order, list(range(len(size_order))))
.alias("order")
)
.sort("order")
)
fr_labels = fund_range["funding_range"].to_list()
fr_counts = fund_range["count"].to_list()
# 6) Projects per Country (Doughnut)
country = (
df.explode("list_country")
.group_by("list_country")
.agg(pl.count().alias("count"))
.sort("count", descending=True)
.head(10)
)
country_labels = country["list_country"].to_list()
country_counts = country["count"].to_list()
# Clean out any nulls before returning
years, year_counts = clean_data(years, year_counts)
size_labels, size_counts = clean_data(size_labels, size_counts)
scheme_labels, scheme_values = clean_data(scheme_labels, scheme_values)
topic_labels, topic_values = clean_data(topic_labels, topic_values)
fr_labels, fr_counts = clean_data(fr_labels, fr_counts)
country_labels, country_counts= clean_data(country_labels, country_counts)
return {
"ppy": {"labels": years, "values": year_counts},
"psd": {"labels": size_labels, "values": size_counts},
"frs": {"labels": scheme_labels, "values": scheme_values},
"top10": {"labels": topic_labels, "values": topic_values},
"frb": {"labels": fr_labels, "values": fr_counts},
"ppc": {"labels": country_labels, "values": country_counts},
}
@app.get("/api/project/{project_id}/organizations")
def get_project_organizations(project_id: str):
"""
Retrieve organization details for a given project ID, including geolocation.
Raises 404 if the project ID does not exist.
"""
df = app.state.df
sel = df.filter(pl.col("id") == int(project_id))
if sel.is_empty():
raise HTTPException(status_code=404, detail="Project not found")
# Explode list columns and parse latitude/longitude
orgs_df = (
sel.select([
pl.col("list_name").explode().alias("name"),
pl.col("list_city").explode().alias("city"),
pl.col("list_SME").explode().alias("sme"),
pl.col("list_role").explode().alias("role"),
pl.col("list_organizationURL").explode().alias("orgURL"),
pl.col("list_ecContribution").explode().alias("contribution"),
pl.col("list_activityType").explode().alias("activityType"),
pl.col("list_country").explode().alias("country"),
pl.col("list_geolocation").explode().alias("geoloc"),
])
.with_columns([
# Split "lat,lon" string into list
pl.col("geoloc").str.split(",").alias("latlon"),
])
.with_columns([
# Cast to floats for numeric use
pl.col("latlon").list.get(0).cast(pl.Float64).alias("latitude"),
pl.col("latlon").list.get(1).cast(pl.Float64).alias("longitude"),
])
.filter(pl.col("name").is_not_null())
.select([
"name","city","sme","role","contribution",
"activityType","orgURL","country","latitude","longitude"
])
)
logger.info(f"Organization data for project {project_id}: {orgs_df.to_dicts()}")
return orgs_df.to_dicts()
|