Spaces:
Running
Running
File size: 17,342 Bytes
5536134 b0ca692 5536134 b0ca692 5536134 2de54b4 5536134 b0ca692 5536134 782ce00 5536134 782ce00 5536134 b0ca692 5536134 782ce00 2de54b4 5536134 2de54b4 5536134 86fd3c3 5536134 dac1f18 86fd3c3 782ce00 b0ca692 2de54b4 22e3c3b 5ec54fa 22e3c3b 5ec54fa 22e3c3b 86fd3c3 22e3c3b 86fd3c3 22e3c3b 86fd3c3 22e3c3b b0ca692 2de54b4 86fd3c3 b0ca692 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 7363a54 86fd3c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
# Standard library
import logging
import os
import shutil
import tempfile
import traceback
import zipfile
from contextlib import asynccontextmanager
from functools import lru_cache
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple
# Third-party
import aiofiles
import faiss
import gcsfs
import polars as pl
import pickle
import torch
from tqdm import tqdm
from fastapi import FastAPI, HTTPException, Request, Depends
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, PrivateAttr
from pydantic_settings import BaseSettings
from sentence_transformers import CrossEncoder
from starlette.concurrency import run_in_threadpool
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
T5ForConditionalGeneration,
T5Tokenizer,
pipeline,
)
from whoosh import index
from whoosh.analysis import StemmingAnalyzer
from whoosh.fields import ID, Schema, TEXT
from whoosh.qparser import MultifieldParser
# LangChain
from langchain.schema import BaseRetriever, Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts import PromptTemplate
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain_community.document_transformers import EmbeddingsRedundantFilter
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFacePipeline, HuggingFaceEmbeddings
# === Logging ===
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class Settings(BaseSettings):
# Parquet + Whoosh/FAISS
parquet_path: str = "gs://mda_kul_project/data/consolidated_clean_pred.parquet"
whoosh_dir: str = "gs://mda_kul_project/whoosh_index"
vectorstore_path: str = "gs://mda_kul_project/vectorstore_index"
# Models
embedding_model: str = "sentence-transformers/LaBSE"
llm_model: str = "google/flmt5-base"
cross_encoder_model: str = "cross-encoder/mmarco-mMiniLMv2-L12-H384-v1"
# RAG parameters
chunk_size: int = 750
chunk_overlap: int = 100
hybrid_k: int = 2
assistant_role: str = (
"You are a knowledgeable project analyst. You have access to the following retrieved document snippets."
)
skip_warmup: bool = True
allowed_origins: List[str] = ["*"]
class Config:
env_file = ".env"
settings = Settings()
# === Global Embeddings & Cache ===
EMBEDDING = HuggingFaceEmbeddings(model_name=settings.embedding_model)
@lru_cache(maxsize=128)
def embed_query_cached(query: str) -> List[float]:
"""Cache embedding vectors for queries."""
return EMBEDDING.embed_query(query.strip().lower())
# === Whoosh Cache & Builder ===
async def build_whoosh_index(docs: List[Document], whoosh_dir: str) -> index.Index:
"""
If gs://.../whoosh_index.zip exists, download & extract it once.
Otherwise build locally from docs and upload the ZIP back to GCS.
"""
fs = gcsfs.GCSFileSystem()
is_gcs = whoosh_dir.startswith("gs://")
zip_uri = whoosh_dir.rstrip("/") + ".zip"
local_zip = "/tmp/whoosh_index.zip"
local_dir = "/tmp/whoosh_index"
# Clean slate
if os.path.exists(local_dir):
shutil.rmtree(local_dir)
os.makedirs(local_dir, exist_ok=True)
# 1️⃣ Try downloading the ZIP if it exists on GCS
if is_gcs and await run_in_threadpool(fs.exists, zip_uri):
logger.info("Found whoosh_index.zip on GCS; downloading…")
await run_in_threadpool(fs.get, zip_uri, local_zip)
# Extract all files (flat) into local_dir
with zipfile.ZipFile(local_zip, "r") as zf:
for member in zf.infolist():
if member.is_dir():
continue
filename = os.path.basename(member.filename)
if not filename:
continue
target = os.path.join(local_dir, filename)
os.makedirs(os.path.dirname(target), exist_ok=True)
with zf.open(member) as src, open(target, "wb") as dst:
dst.write(src.read())
logger.info("Whoosh index extracted from ZIP.")
else:
logger.info("No whoosh_index.zip found; building index from docs.")
# Define the schema with stored content
schema = Schema(
id=ID(stored=True, unique=True),
content=TEXT(stored=True, analyzer=StemmingAnalyzer()),
)
# Create the index
ix = index.create_in(local_dir, schema)
writer = ix.writer()
for doc in docs:
writer.add_document(
id=doc.metadata.get("id", ""),
content=doc.page_content,
)
writer.commit()
logger.info("Whoosh index built locally.")
# Upload the ZIP back to GCS
if is_gcs:
logger.info("Zipping and uploading new whoosh_index.zip to GCS…")
with zipfile.ZipFile(local_zip, "w", zipfile.ZIP_DEFLATED) as zf:
for root, _, files in os.walk(local_dir):
for fname in files:
full = os.path.join(root, fname)
arc = os.path.relpath(full, local_dir)
zf.write(full, arc)
await run_in_threadpool(fs.put, local_zip, zip_uri)
logger.info("Uploaded whoosh_index.zip to GCS.")
# 2️⃣ Finally open the index and return it
ix = index.open_dir(local_dir)
return ix
# === Document Loader ===
async def load_documents(
path: str,
sample_size: Optional[int] = None
) -> List[Document]:
"""
Load project data from a Parquet file (local path or GCS URI),
assemble metadata context for each row, and return as Document objects.
"""
def _read_local(p: str, n: Optional[int]):
# streaming scan keeps memory low
lf = pl.scan_parquet(p)
if n:
lf = lf.limit(n)
return lf.collect(streaming=True)
def _read_gcs(p: str, n: Optional[int]):
# download to a temp file synchronously, then read with Polars
fs = gcsfs.GCSFileSystem()
with tempfile.TemporaryDirectory() as td:
local_path = os.path.join(td, "data.parquet")
fs.get(p, local_path, recursive=False)
df = pl.read_parquet(local_path)
if n:
df = df.head(n)
return df
try:
if path.startswith("gs://"):
df = await run_in_threadpool(_read_gcs, path, sample_size)
else:
df = await run_in_threadpool(_read_local, path, sample_size)
except Exception as e:
logger.error(f"Error loading documents: {e}")
raise HTTPException(status_code=500, detail="Document loading failed.")
docs: List[Document] = []
for row in df.rows(named=True):
context_parts: List[str] = []
# build metadata context
max_contrib = row.get("ecMaxContribution", "")
end_date = row.get("endDate", "")
duration = row.get("durationDays", "")
status = row.get("status", "")
legal = row.get("legalBasis", "")
framework = row.get("frameworkProgramme", "")
scheme = row.get("fundingScheme", "")
names = row.get("list_name", []) or []
cities = row.get("list_city", []) or []
countries = row.get("list_country", []) or []
activity = row.get("list_activityType", []) or []
contributions = row.get("list_ecContribution", []) or []
smes = row.get("list_sme", []) or []
project_id =row.get("id", "")
pred=row.get("predicted_label", "")
proba=row.get("predicted_prob", "")
top1_feats=row.get("top1_features", "")
top2_feats=row.get("top2_features", "")
top3_feats=row.get("top3_features", "")
top1_shap=row.get("top1_shap", "")
top2_shap=row.get("top2_shap", "")
top3_shap=row.get("top3_shap", "")
context_parts.append(
f"This project under framework {framework} with funding scheme {scheme}, status {status}, legal basis {legal}."
)
context_parts.append(
f"It ends on {end_date} after {duration} days and has a max EC contribution of {max_contrib}."
)
context_parts.append("Participating organizations:")
for i, name in enumerate(names):
city = cities[i] if i < len(cities) else ""
country = countries[i] if i < len(countries) else ""
act = activity[i] if i < len(activity) else ""
contrib = contributions[i] if i < len(contributions) else ""
sme_flag = "SME" if (smes and i < len(smes) and smes[i]) else "non-SME"
context_parts.append(
f"- {name} in {city}, {country}, activity: {act}, contributed: {contrib}, {sme_flag}."
)
if status in (None,"signed","SIGNED","Signed"):
if int(pred) == 1:
label = "TERMINATED"
score = float(proba)
else:
label = "CLOSED"
score = 1 - float(proba)
score_str = f"{score:.2f}"
context_parts.append(
f"- Project {project_id} is predicted to be {label} (score={score_str}). "
f"The 3 most predictive features were: "
f"{top1_feats} ({top1_shap:.3f}), "
f"{top2_feats} ({top2_shap:.3f}), "
f"{top3_feats} ({top3_shap:.3f})."
)
title_report = row.get("list_title_report", "")
objective = row.get("objective", "")
full_body = f"{title_report} {objective}"
full_text = " ".join(context_parts + [full_body])
meta: Dict[str, Any] = {"id": str(row.get("id", "")),"startDate": str(row.get("startDate", "")),"endDate": str(row.get("endDate", "")),"status":str(row.get("status", "")),"legalBasis":str(row.get("legalBasis",""))}
meta.update({"id": str(row.get("id", "")),"startDate": str(row.get("startDate", "")),"endDate": str(row.get("endDate", "")),"status":str(row.get("status", "")),"legalBasis":str(row.get("legalBasis",""))})
docs.append(Document(page_content=full_text, metadata=meta))
return docs
# === BM25 Search ===
async def bm25_search(ix: index.Index, query: str, k: int) -> List[Document]:
parser = MultifieldParser(["content"], schema=ix.schema)
def _search() -> List[Document]:
with ix.searcher() as searcher:
hits = searcher.search(parser.parse(query), limit=k)
return [Document(page_content=h["content"], metadata={"id": h["id"]}) for h in hits]
return await run_in_threadpool(_search)
# === Helper: build or load FAISS with mmap ===
async def build_or_load_faiss(
docs: List[Document],
vectorstore_path: str,
batch_size: int = 15000
) -> FAISS:
"""
Expects a ZIP at vectorstore_path + ".zip" containing:
- index.faiss
- index.pkl
Files may be nested under a subfolder (e.g. vectorstore_index_colab/).
If the ZIP exists on GCS, download & load only.
Otherwise, build from `docs`, save, re-zip, and upload.
"""
fs = gcsfs.GCSFileSystem()
is_gcs = vectorstore_path.startswith("gs://")
zip_uri = vectorstore_path.rstrip("/") + ".zip"
local_zip = "/tmp/faiss_index.zip"
local_dir = "/tmp/faiss_store"
# 1) if ZIP exists, download & extract
if is_gcs and await run_in_threadpool(fs.exists, zip_uri):
logger.info("Found FAISS ZIP on GCS; loading only.")
# clean slate
if os.path.exists(local_dir):
shutil.rmtree(local_dir)
os.makedirs(local_dir, exist_ok=True)
# download zip
await run_in_threadpool(fs.get, zip_uri, local_zip)
# extract
def _extract():
with zipfile.ZipFile(local_zip, "r") as zf:
zf.extractall(local_dir)
await run_in_threadpool(_extract)
# locate the two files anywhere under local_dir
idx_path = None
meta_path = None
for root, _, files in os.walk(local_dir):
if "index.faiss" in files:
idx_path = os.path.join(root, "index.faiss")
if "index.pkl" in files:
meta_path = os.path.join(root, "index.pkl")
if not idx_path or not meta_path:
raise FileNotFoundError("Couldn't find index.faiss or index.pkl in extracted ZIP.")
# memory-map load
mmap_index = await run_in_threadpool(
faiss.read_index, idx_path, faiss.IO_FLAG_MMAP
)
# load metadata
with open(meta_path, "rb") as f:
saved = pickle.load(f)
# unpack metadata
if isinstance(saved, tuple):
_, docstore, index_to_docstore = (
saved if len(saved) == 3 else (None, *saved)
)
else:
docstore = getattr(saved, "docstore", saved._docstore)
index_to_docstore = getattr(
saved,
"index_to_docstore",
getattr(saved, "_index_to_docstore", saved._faiss_index_to_docstore)
)
# reconstruct FAISS
vs = FAISS(
embedding_function=EMBEDDING,
index=mmap_index,
docstore=docstore,
index_to_docstore_id=index_to_docstore,
)
logger.info("FAISS index loaded from ZIP.")
return vs
# 2) otherwise, build from scratch and upload
logger.info("No FAISS ZIP found; building index from scratch.")
if os.path.exists(local_dir):
shutil.rmtree(local_dir)
os.makedirs(local_dir, exist_ok=True)
vs: FAISS = None
for i in range(0, len(docs), batch_size):
batch = docs[i : i + batch_size]
if vs is None:
vs = FAISS.from_documents(batch, EMBEDDING)
else:
vs.add_documents(batch)
assert vs is not None, "No documents to index!"
# save locally
vs.save_local(local_dir)
if is_gcs:
# re-zip all contents of local_dir (flattened)
def _zip_dir():
with zipfile.ZipFile(local_zip, "w", zipfile.ZIP_DEFLATED) as zf:
for root, _, files in os.walk(local_dir):
for fname in files:
full = os.path.join(root, fname)
arc = os.path.relpath(full, local_dir)
zf.write(full, arc)
await run_in_threadpool(_zip_dir)
await run_in_threadpool(fs.put, local_zip, zip_uri)
logger.info("Built FAISS index and uploaded ZIP to GCS.")
return vs
# === Index Builder ===
async def build_indexes(
parquet_path: str,
vectorstore_path: str,
whoosh_dir: str,
chunk_size: int,
chunk_overlap: int,
debug_size: Optional[int]
) -> Tuple[FAISS, index.Index]:
"""
Load documents, build/load Whoosh and FAISS indices, and return both.
"""
docs = await load_documents(parquet_path, debug_size)
ix = await build_whoosh_index(docs, whoosh_dir)
splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
chunks = splitter.split_documents(docs)
# build or load (with mmap) FAISS
vs = await build_or_load_faiss(chunks, vectorstore_path)
return vs, ix
# === Hybrid Retriever ===
class HybridRetriever(BaseRetriever):
"""Hybrid retriever combining BM25 and FAISS with cross-encoder re-ranking."""
# store FAISS and Whoosh under private attributes to avoid Pydantic field errors
_vs: FAISS = PrivateAttr()
_ix: index.Index = PrivateAttr()
_compressor: DocumentCompressorPipeline = PrivateAttr()
_cross_encoder: CrossEncoder = PrivateAttr()
def __init__(
self,
vs: FAISS,
ix: index.Index,
compressor: DocumentCompressorPipeline,
cross_encoder: CrossEncoder
) -> None:
super().__init__()
object.__setattr__(self, '_vs', vs)
object.__setattr__(self, '_ix', ix)
object.__setattr__(self, '_compressor', compressor)
object.__setattr__(self, '_cross_encoder', cross_encoder)
async def _aget_relevant_documents(self, query: str) -> List[Document]:
# BM25 retrieval using Whoosh index
bm_docs = await bm25_search(self._ix, query, settings.hybrid_k)
# Dense retrieval using FAISS
dense_docs = self._vs.similarity_search_by_vector(
embed_query_cached(query), k=settings.hybrid_k
)
# Cross-encoder re-ranking
candidates = bm_docs + dense_docs
scores = self._cross_encoder.predict([
(query, doc.page_content) for doc in candidates
])
ranked = sorted(zip(scores, candidates), key=lambda x: x[0], reverse=True)
top = [doc for _, doc in ranked[: settings.hybrid_k]]
# Compress and return
return self._compressor.compress_documents(top, query=query)
def _get_relevant_documents(self, query: str) -> List[Document]:
import asyncio
return asyncio.get_event_loop().run_until_complete(
self._aget_relevant_documents(query)
) |