Spaces:
Running
Running
File size: 15,849 Bytes
1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
"""
CORDIS Data Cleaning and Consolidation Script
- Cleans "dirty" CORDIS CSVs with misaligned columns due to text fields.
- Type-coerces and merges per-dataset data across all available programme folders.
- Aggregates project-related data into a single consolidated Parquet file.
"""
import re
import csv
import pathlib
import polars as pl
# ==== PATHS AND DATASET CONFIGURATION ========================================
ROOT = pathlib.Path(
r"C:\Users\Romain\OneDrive - KU Leuven\Masters\MBIS\Year 2\Semester 2\Modern Data Analytics\CORDIS"
)
OUTDIR = ROOT / "combined"
OUTDIR.mkdir(exist_ok=True)
DATASETS = [
"project",
"projectDeliverables",
"projectPublications",
"reportSummaries",
"organization",
"euroSciVoc",
"topics",
"webItem",
"webLink",
"legalBasis",
]
# ==== REGEX FOR CLEANING =====================================================
_PROJECT_ID_RE = re.compile(r"^(?:19|20)\d{2}")
_GENERIC_NUM_RE = re.compile(r"\d{4}")
# ==== CLEANING FUNCTION ======================================================
def _clean_one_file(csv_path: pathlib.Path, number_regex: re.Pattern, dataset: str) -> pl.DataFrame:
"""
Cleans a CORDIS CSV file, handling column misalignment due to unescaped semicolons.
Args:
csv_path: Path to input CSV file.
number_regex: Regex to clean numeric fields.
dataset: Name of the dataset ("project", "organization", etc.)
Returns:
Cleaned Polars DataFrame.
"""
# Dataset-specific expected column settings
dataset_settings = {
"project": dict(EXPECTED_COLS=20, OBJECTIVE_COL=16, TRAILING_KEEP=3),
"organization": dict(EXPECTED_COLS=25, OBJECTIVE_COL=4, TRAILING_KEEP=20),
}
DEFAULT_SETTINGS = dict(EXPECTED_COLS=20, OBJECTIVE_COL=16, TRAILING_KEEP=3)
settings = dataset_settings.get(dataset, DEFAULT_SETTINGS)
EXPECTED_COLS = settings["EXPECTED_COLS"]
OBJECTIVE_COL = settings["OBJECTIVE_COL"]
TRAILING_KEEP = settings["TRAILING_KEEP"]
date_rx = re.compile(r"\d{4}-\d{2}-\d{2}$")
is_date = lambda s: (s == "") or bool(date_rx.match(s))
tmp_clean = csv_path.with_suffix(".cleaned.csv")
with csv_path.open(encoding="utf-8", newline="") as fin, \
tmp_clean.open("w", encoding="utf-8", newline="") as fout:
writer = csv.writer(
fout,
delimiter="|",
quotechar='"',
quoting=csv.QUOTE_MINIMAL,
lineterminator="\n",
)
for raw in fin:
raw = raw.rstrip("\n")
cells = raw.split(";") # Naive split
# Step 1: Repair "title" overflow due to misaligned dates (for "project" only)
if (
dataset == "project" and len(cells) > EXPECTED_COLS
and (not is_date(cells[4]) or not is_date(cells[5]))
):
i = 4
while i + 1 < len(cells):
if is_date(cells[i]) and is_date(cells[i + 1]):
break
i += 1
else:
continue # Skip if not fixable
head = cells[:3]
title = ";".join(cells[3:i])
cells = head + [title] + cells[i:]
# Step 2: Repair "objective" overflow (for project/organization)
if len(cells) > EXPECTED_COLS and dataset in ("project", "organization"):
head = cells[:OBJECTIVE_COL]
tail = cells[-TRAILING_KEEP:]
obj = ";".join(cells[OBJECTIVE_COL:-TRAILING_KEEP])
cells = head + [obj] + tail
# Step 3: Pad short rows, skip if still malformed
if len(cells) < EXPECTED_COLS and dataset in ("project", "organization"):
cells.extend([""] * (EXPECTED_COLS - len(cells)))
if len(cells) != EXPECTED_COLS and dataset in ("project", "organization"):
continue
# Step 4: Cell-level cleaning
cleaned = []
for cell in cells:
cell = cell.strip('"')
if cell in ('""', ""):
cell = ""
else:
cell = cell.replace("\t", " ").replace('"""', '"').strip()
if number_regex.fullmatch(cell):
cell = cell.lstrip("0") or "0"
cleaned.append(cell)
if cleaned:
cleaned[-1] = cleaned[-1].replace('"', '').replace(',', '')
cleaned[0] = cleaned[0].replace('"', '')
writer.writerow(cleaned)
# Read cleaned file with Polars
return pl.read_csv(
tmp_clean,
separator="|",
quote_char='"',
has_header=True,
infer_schema_length=0,
null_values=[""],
truncate_ragged_lines=True,
)
# ==== COMBINING AND TYPE CASTING ACROSS PROGRAMMES ===========================
def combine_all_programmes() -> None:
"""
Combines and cleans each CORDIS dataset across all available programmes,
and writes a single Parquet file per dataset.
"""
for dataset in DATASETS:
combined = []
for programme_dir in ROOT.iterdir():
if not programme_dir.is_dir():
continue
csv_file = programme_dir / f"{dataset}.csv"
if not csv_file.exists():
continue
regex = _PROJECT_ID_RE if dataset == "project" else _GENERIC_NUM_RE
df = _clean_one_file(csv_file, regex, dataset)
# Type coercions (dataset-specific)
if dataset == "project":
df = (
df.with_columns([
pl.col("id"),
pl.col("acronym").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("status").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("title").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("legalBasis").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("topics").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("frameworkProgramme").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("masterCall").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("subCall").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("fundingScheme").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("nature").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("objective").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("grantDoi").cast(pl.Utf8, strict=False).str.strip_chars('"'),
pl.col("totalCost").cast(pl.Utf8, strict=False).str.strip_chars('"').str.replace_all('"', '').str.replace(",", ".").cast(pl.Float64),
pl.col("ecMaxContribution").cast(pl.Utf8, strict=False).str.strip_chars('"').str.replace_all('"', '').str.replace(",", ".").cast(pl.Float64),
pl.col("startDate").cast(pl.Utf8, strict=False).str.strip_chars('"').str.strptime(pl.Date, "%Y-%m-%d", strict=False),
pl.col("endDate").cast(pl.Utf8, strict=False).str.strip_chars('"').str.strptime(pl.Date, "%Y-%m-%d", strict=False),
pl.col("ecSignatureDate").cast(pl.Utf8, strict=False).str.strip_chars('"').str.strptime(pl.Date, "%Y-%m-%d", strict=False),
pl.col("contentUpdateDate").cast(pl.Utf8, strict=False).str.strip_chars('"').str.strptime(pl.Datetime, "%Y-%m-%d %H:%M:%S", strict=False),
pl.col("rcn").cast(pl.Int64),
])
.with_columns(
pl.lit(programme_dir.name).alias("programmeFolder")
)
)
elif dataset == "organization":
df = df.with_columns([
pl.col("contentUpdateDate").cast(pl.Utf8, strict=False).str.strptime(pl.Datetime, "%Y-%m-%d %H:%M:%S", strict=False),
pl.col("totalCost").cast(pl.Utf8, strict=False).str.replace(",", ".").cast(pl.Float64),
])
elif dataset == "projectDeliverables":
df = df.with_columns([
pl.col("contentUpdateDate").cast(pl.Utf8, strict=False).str.strptime(pl.Datetime, "%Y-%m-%d %H:%M:%S", strict=False),
])
elif dataset == "projectPublications":
# Special handling for H2013, else standardize
if programme_dir.name == "H2013":
rename_map = {
"RECORD_ID": "id",
"TITLE": "title",
"AUTHOR": "authors",
"DOI": "doi",
"PROJECT_ID": "projectID",
"JOURNAL_TITLE": "journalTitle",
"PAGES": "publishedPages",
"PUBLICATION_TYPE": "isPublishedAs",
}
df = df.rename(rename_map)
else:
df = df.with_columns([
pl.col("contentUpdateDate").cast(pl.Utf8, strict=False).str.strptime(pl.Datetime, "%Y-%m-%d %H:%M:%S", strict=False),
pl.col("id").cast(pl.Utf8, strict=False).str.extract(r"^(\d+)_", 1).alias("projectID"),
])
elif dataset == "reportSummaries":
df = df.with_columns(
pl.col("contentUpdateDate").cast(pl.Utf8, strict=False).str.strptime(pl.Datetime, "%Y-%m-%d %H:%M:%S", strict=False),
)
elif dataset == "webLink":
pass # No special handling
elif dataset == "webItem":
df = df.with_columns(
pl.col("uri").cast(pl.Utf8, strict=False).str.extract(r"/files/\d+/(\d+)/", 1).cast(pl.Int64).alias("projectID"),
)
elif dataset == "legalBasis":
pass # No special handling
combined.append(df)
# Write out per-dataset Parquet
if combined:
how = "diagonal" if dataset == "projectPublications" else "vertical_relaxed"
result = pl.concat(combined, how=how)
parquet_path = OUTDIR / f"{dataset}_all.parquet"
result.write_parquet(parquet_path)
print(f"✔ {dataset:20s} → {parquet_path}")
# ==== CALL THE COMBINER FUNCTION TO GENERATE PARQUETS ========================
combine_all_programmes()
# ==== AGGREGATION AND CONSOLIDATION ==========================================
# Load all combined Parquet files
dfs = {dataset: pl.read_parquet(OUTDIR / f"{dataset}_all.parquet") for dataset in DATASETS}
# Aggregate per-project lists
projects = dfs["project"]
projects_deliv = dfs["projectDeliverables"].group_by("projectID").agg([
pl.col("deliverableType").alias("list_deliverableType"),
pl.col("url").alias("list_url"),
pl.col("contentUpdateDate").alias("list_contentUpdateDate"),
])
projects_publi = dfs["projectPublications"].group_by("projectID").agg([
pl.col("authors").alias("list_authors"),
pl.col("title").alias("list_title"),
pl.col("doi").alias("list_doi"),
pl.col("journalTitle").alias("list_journalTitle"),
pl.col("isPublishedAs").alias("list_isPublishedAs"),
pl.col("publishedYear").alias("list_publishedYear"),
pl.col("contentUpdateDate").alias("list_contentUpdateDate"),
])
report = dfs["reportSummaries"].group_by("projectID").agg([
pl.col("title").alias("list_title"),
pl.col("attachment").alias("list_attachment"),
pl.col("contentUpdateDate").alias("list_contentUpdateDate"),
])
org = dfs["organization"].group_by("projectID").agg([
pl.col("organisationID").alias("list_organisationID"),
pl.col("country").alias("list_country"),
pl.col("name").alias("list_name"),
pl.col("SME").alias("list_SME"),
pl.col("city").alias("list_city"),
pl.col("geolocation").alias("list_geolocation"),
pl.col("organizationURL").alias("list_organizationURL"),
pl.col("role").alias("list_role"),
pl.col("ecContribution").alias("list_ecContribution"),
pl.col("netEcContribution").alias("list_netEcContribution"),
pl.col("totalCost").alias("list_totalCost"),
pl.col("endOfParticipation").alias("list_endOfParticipation"),
pl.col("activityType").alias("list_activityType"),
pl.col("contentUpdateDate").alias("list_contentUpdateDate"),
])
voc = dfs["euroSciVoc"].group_by("projectID").agg([
pl.col("euroSciVocTitle").alias("list_euroSciVocTitle"),
pl.col("euroSciVocPath").alias("list_euroSciVocPath"),
pl.col("euroSciVocDescription").alias("list_description"),
])
topic = dfs["topics"].group_by("projectID").agg([
pl.col("topic").alias("list_topic"),
pl.col("title").alias("list_title"),
])
web_item = dfs["webItem"]
web_link = dfs["webLink"].group_by("projectID").agg([
pl.col("physUrl").alias("list_physUrl"),
pl.col("availableLanguages").alias("list_availableLanguages"),
pl.col("status").alias("list_status"),
pl.col("archivedDate").alias("list_archivedDate"),
pl.col("type").alias("list_type"),
pl.col("source").alias("list_source"),
pl.col("represents").alias("list_represents"),
])
legal = dfs["legalBasis"].group_by("projectID").agg([
pl.col("legalBasis").alias("list_legalBasis"),
pl.col("title").alias("list_title"),
pl.col("uniqueProgrammePart").alias("list_uniqueProgrammePart"),
])
# Join all aggregated info into a consolidated DataFrame
consolidated = (
projects
.join(projects_deliv, left_on="id", right_on="projectID", suffix="_deliv", how="left")
.join(projects_publi, left_on="id", right_on="projectID", suffix="_publi", how="left")
.join(report, left_on="id", right_on="projectID", suffix="_report", how="left")
.join(org, left_on="id", right_on="projectID", suffix="_org", how="left")
.join(web_link, left_on="id", right_on="projectID", suffix="_link", how="left")
.join(legal, left_on="id", right_on="projectID", suffix="_legal", how="left")
.join(topic, left_on="id", right_on="projectID", suffix="_topic", how="left")
.join(voc, left_on="id", right_on="projectID", suffix="_voc", how="left")
)
# Standardize dates and compute extra fields
for col in ["startDate", "endDate"]:
if consolidated[col].dtype == pl.Utf8:
consolidated = consolidated.with_column(
pl.col(col).str.strptime(pl.Date, "%Y-%m-%d").alias(col)
)
consolidated = consolidated.with_columns([
pl.col("list_netEcContribution").list.eval(pl.element().cast(pl.Float64), parallel=True).list.sum().alias("netEcContribution"),
pl.col("totalCost").cast(pl.Float64),
pl.col("startDate").dt.year().alias("startYear"),
pl.col("endDate").dt.year().alias("endYear"),
(pl.col("endDate") - pl.col("startDate")).dt.total_days().alias("durationDays"),
])
consolidated = consolidated.with_columns([
(pl.col("netEcContribution") / pl.col("totalCost")).alias("ecRatio"),
])
consolidated.write_parquet(OUTDIR / "consolidated.parquet")
print(f"✔ consolidated → {OUTDIR / 'consolidated.parquet'}")
# ==== CLEANING FILTERS =======================================================
excluded_frameworks = ["FP1", "FP2", "FP3", "FP4", "FP5", "FP6"]
consolidated_clean = consolidated.filter(~pl.col("frameworkProgramme").is_in(excluded_frameworks))
consolidated_clean.write_parquet(OUTDIR / "consolidated_clean.parquet")
print(f"✔ consolidated_clean → {OUTDIR / 'consolidated_clean.parquet'}")
|