Spaces:
Running
Running
File size: 24,839 Bytes
69e8901 1478716 b0ca692 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 1478716 69e8901 b0ca692 69e8901 b0ca692 69e8901 b0ca692 1478716 69e8901 b0ca692 69e8901 b0ca692 69e8901 1478716 69e8901 1478716 69e8901 1478716 b0ca692 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
import os
import json
import joblib
import numpy as np
import pandas as pd
import shap
import matplotlib.pyplot as plt
import scipy.sparse
import polars as pl
import re
import gcsfs
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline as SKPipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler, MultiLabelBinarizer
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold
from sklearn.feature_selection import SelectKBest, f_classif, VarianceThreshold
from sklearn.metrics import classification_report, ConfusionMatrixDisplay, f1_score, make_scorer
from sklearn.decomposition import TruncatedSVD
from sklearn.calibration import CalibratedClassifierCV
from sklearn.ensemble import IsolationForest
from imblearn.pipeline import Pipeline as ImbPipeline
from imblearn.over_sampling import ADASYN
from sentence_transformers import SentenceTransformer
from xgboost import XGBClassifier
from evidently import Report
from evidently.presets import DataDriftPreset
import optuna
# --- Custom Transformers ---
# Transformer for binarizing multi-label columns (lists of categories per row)
class MultiLabelBinarizerTransformer(BaseEstimator, TransformerMixin):
"""Custom transformer to binarize multi-label (list of strings) columns.
Attributes:
col (str): The column name being transformed.
mlb (MultiLabelBinarizer): Fitted binarizer.
"""
def fit(self, X, y=None):
"""Fit the binarizer to the data.
Args:
X (pd.Series): Series of lists to binarize.
y (ignored): Not used.
Returns:
self
"""
self.col = X.name
self.mlb = MultiLabelBinarizer()
self.mlb.fit(X)
return self
def transform(self, X):
"""Transform the input Series to a binary matrix.
Args:
X (pd.Series): Series of lists to transform.
Returns:
np.ndarray: Binary matrix for multi-label data.
"""
return self.mlb.transform(X)
def get_feature_names_out(self, input_features=None):
"""Get output feature names for the binarized columns.
Args:
input_features (ignored): Not used.
Returns:
list: List of output feature names.
"""
return [f"{self.col}_{cls}" for cls in self.mlb.classes_]
def get_params(self, deep=True):
"""Get parameters (stub for sklearn compatibility)."""
return {}
def set_params(self, **params):
"""Set parameters (stub for sklearn compatibility)."""
return self
# Adds anomaly score from IsolationForest as a feature (for noise/outlier detection)
class AnomalyScoreTransformer(BaseEstimator, TransformerMixin):
"""Custom transformer to compute anomaly scores using IsolationForest
and add them as a new feature.
"""
def __init__(self):
self.model = IsolationForest(n_estimators=200, contamination=0.1, random_state=42)
def fit(self, X, y=None):
"""Fit the IsolationForest on input data.
Args:
X (array-like): Input features.
y (ignored): Not used.
Returns:
self
"""
self.model.fit(X)
return self
def transform(self, X):
"""Transform the data by appending the anomaly scores.
Args:
X (array-like): Input features.
Returns:
np.ndarray: Input features with anomaly score column appended.
"""
scores = -self.model.decision_function(X)
return np.hstack([X, scores.reshape(-1, 1)])
# --- Step 1: Data Preparation ---
def prepare_data(df, is_train=True, model_dir="model_artifacts"):
"""Prepare and clean the raw input DataFrame for modeling.
- Maps status to binary label if training.
- Handles multilabel columns.
- Cleans and expands list fields.
- Adds count features.
Args:
df (pd.DataFrame): Raw data.
is_train (bool): Whether the data is for training.
model_dir (str): Directory to store artifacts (not used here).
Returns:
pd.DataFrame: Cleaned and feature-engineered DataFrame.
"""
df = df.copy()
if is_train:
# Filter for only labeled classes and map to numeric
df['status'] = df['status'].astype(str).str.upper()
df = df[df['status'].isin(['CLOSED', 'TERMINATED'])]
df['label'] = df['status'].map({'CLOSED': 0, 'TERMINATED': 1})
assert df['label'].notna().all(), "Label column still has NaNs!"
# Define fields that are lists of values (multi-label columns)
multilabel_fields = [
'list_country', 'list_activityType', 'list_deliverableType',
'list_availableLanguages', 'list_euroSciVocTitle'
]
# Helper to extract intermediate paths (for hierarchy/ontology features)
def extract_intermediate_levels(paths):
tokens = []
if isinstance(paths, list):
for p in paths:
parts = p.strip('/').split('/')
tokens.extend(parts[:-1])
return list(set(tokens))
df['euroSciVoc_intermediate'] = df['list_euroSciVocPath'].apply(extract_intermediate_levels)
multilabel_fields.append('euroSciVoc_intermediate')
# Normalize and clean multi-label fields
for col in multilabel_fields:
df[col] = df[col].apply(lambda x: [] if x is None else (x.tolist() if hasattr(x, 'tolist') else x))
df[col] = df[col].apply(lambda x: list(x) if not isinstance(x, list) else x)
df[col] = df[col].apply(lambda x: [item for item in x if item is not None])
df[col] = df[col].apply(lambda x: [str(item).upper() for item in x])
# Split language field (if comma-separated)
def split_languages(lang_list):
if not isinstance(lang_list, list):
return []
result = []
for entry in lang_list:
if isinstance(entry, str):
result.extend(entry.split(","))
return result
df["list_availableLanguages"] = df["list_availableLanguages"].apply(split_languages)
# Fill NA and convert to string for text columns
for col in ['title', 'objective']:
df[col] = df[col].fillna("").astype(str)
# Count number of partners, countries, SMEs (for feature engineering)
df['n_partners'] = df['list_name'].apply(
lambda x: len(x.tolist()) if x is not None and hasattr(x, 'tolist') else (len(x) if isinstance(x, list) else 0)
)
df['n_country'] = df['list_country'].apply(
lambda x: len(x.tolist()) if x is not None and hasattr(x, 'tolist') else (len(x) if isinstance(x, list) else 0)
)
df['n_sme'] = df['list_SME'].apply(
lambda x: sum(1 for i in (x.tolist() if hasattr(x, 'tolist') else x) if i is True)
if x is not None and (hasattr(x, 'tolist') or isinstance(x, list)) else 0
)
return df
# --- Step 2: Text Embedding ---
def compute_embeddings(df, text_columns, model_name='sentence-transformers/LaBSE', svd_dim=50):
"""Compute SBERT embeddings for text columns, reduce with SVD, and add to DataFrame.
Embeddings are cached to disk for re-use. SVD is fitted per column.
Args:
df (pd.DataFrame): DataFrame with text columns.
text_columns (list of str): Columns to embed.
model_name (str): HuggingFace model name.
svd_dim (int): Number of SVD components.
Returns:
pd.DataFrame: DataFrame with added embedding columns.
"""
model = SentenceTransformer(model_name)
os.makedirs("/content/drive/MyDrive/model_artifacts", exist_ok=True)
os.makedirs("/content/drive/MyDrive/embeddings", exist_ok=True)
for col in text_columns:
embedding_file = f"/content/drive/MyDrive/embeddings/{col}_embeddings.npy"
svd_file = f"/content/drive/MyDrive/model_artifacts/{col}_svd.pkl"
if os.path.exists(embedding_file):
print(f"Loading saved embeddings for column '{col}'...")
embeddings = np.load(embedding_file)
else:
print(f"Computing embeddings for column '{col}'...")
embeddings = model.encode(df[col].tolist(), show_progress_bar=True)
np.save(embedding_file, embeddings)
print(f"Fitting SVD for column '{col}'...")
svd = TruncatedSVD(n_components=svd_dim, random_state=42)
svd.fit(embeddings)
joblib.dump(svd, svd_file)
reduced = svd.transform(embeddings)
embed_df = pd.DataFrame(reduced, columns=[f'{col}_embed_{i}' for i in range(reduced.shape[1])])
embed_df.index = df.index # Keep index aligned for merge
df = pd.concat([df, embed_df], axis=1)
return df
# --- Step 3: Build Preprocessor ---
def build_preprocessor(numeric_features, categorical_features, multilabel_fields):
"""Create a ColumnTransformer that preprocesses numeric, categorical, and multilabel fields.
Args:
numeric_features (list of str): Names of numeric columns.
categorical_features (list of str): Names of categorical columns.
multilabel_fields (list of str): Names of multi-label columns.
Returns:
ColumnTransformer: Configured sklearn transformer.
"""
numeric_pipeline = SKPipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())], memory="cache_dir"
)
categorical_pipeline = SKPipeline([
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False))], memory="cache_dir"
)
transformers = [
('num', numeric_pipeline, numeric_features),
('cat', categorical_pipeline, categorical_features),
# Add a binarizer transformer for each multilabel field
*[(f'mlb_{col}', MultiLabelBinarizerTransformer(), col) for col in multilabel_fields]]
return ColumnTransformer(transformers, sparse_threshold=0.0)
# --- Step 4: Build Pipeline ---
def build_pipeline(preprocessor, base_model, k=250):
"""Build the full ML pipeline including preprocessing, anomaly detection,
resampling, feature selection, and a calibrated classifier.
Args:
preprocessor (ColumnTransformer): Preprocessing transformer.
base_model (sklearn estimator): Base classifier (e.g. XGBClassifier).
k (int): Number of features to select.
Returns:
ImbPipeline: Configured imbalanced-learn pipeline.
"""
return ImbPipeline(steps=[
('preprocessor', preprocessor),
('anomaly', AnomalyScoreTransformer()),
('resample', ADASYN()),
("variance_filter", VarianceThreshold(threshold=0.0)),
('feature_select', SelectKBest(score_func=f_classif, k=k)),
('classifier', CalibratedClassifierCV(estimator=base_model, method='isotonic', cv=3))
])
# --- Step 5: Drift Monitoring ---
def monitor_drift(reference, current, feature_names, output_html='drift_report.html'):
"""Generate a drift report using Evidently comparing reference and current data.
Args:
reference (np.ndarray or pd.DataFrame): Reference feature matrix.
current (np.ndarray or pd.DataFrame): Current feature matrix.
feature_names (list of str): Feature names.
output_html (str): Output path for HTML report.
Returns:
None
"""
ref_df = pd.DataFrame(reference, columns=feature_names)
cur_df = pd.DataFrame(current, columns=feature_names)
report = Report(metrics=[DataDriftPreset()])
evaluated_report = report.run(reference_data=ref_df, current_data=cur_df)
evaluated_report.save_html(output_html)
print(f"✅ Drift report saved to {output_html}")
# --- Step 6: Evaluation + SHAP ---
def evaluate_model(model, X_train, X_test, y_train, y_test, feature_names):
"""Print evaluation metrics, show confusion matrix, and plot SHAP summary.
Args:
model (sklearn Pipeline): Trained pipeline.
X_train (np.ndarray or pd.DataFrame): Training features.
X_test (np.ndarray or pd.DataFrame): Test features.
y_train (np.ndarray or pd.Series): Training labels.
y_test (np.ndarray or pd.Series): Test labels.
feature_names (list of str): Feature names after selection.
Returns:
None
"""
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))
ConfusionMatrixDisplay.from_predictions(y_test, y_pred)
plt.title("Evaluation")
plt.tight_layout()
plt.show()
# Prepare data for SHAP after feature selection
X_proc = model.named_steps['preprocessor'].transform(X_test)
if scipy.sparse.issparse(X_proc):
X_proc = X_proc.toarray()
selector = model.named_steps['feature_select']
X_selected = selector.transform(X_proc)
explainer = shap.TreeExplainer(model.named_steps['classifier'].calibrated_classifiers_[0].estimator, feature_names=feature_names)
shap_values = explainer(X_selected)
shap.summary_plot(shap_values, X_selected)
# --- Final Orchestration ---
def status_prediction_model(df):
"""Orchestrate end-to-end model training, evaluation, drift detection, and saving artifacts.
Args:
df (pd.DataFrame): Input data.
Returns:
None
"""
os.makedirs("model_artifacts", exist_ok=True)
print("🧹 Preparing data...")
df = prepare_data(df, is_train=True)
print("💡 Embedding text...")
df = compute_embeddings(df, ['title', 'objective'])
# Feature lists for the pipeline
text_embed_cols = [col for col in df.columns if '_embed_' in col]
numeric_features = ['durationDays', 'ecMaxContribution', 'totalCost',
'n_partners', 'n_country', 'n_sme'] + text_embed_cols
categorical_features = ['fundingScheme', 'legalBasis', 'nature']
multilabel_fields = ['list_country', 'list_activityType', 'list_deliverableType',
'list_availableLanguages', 'list_euroSciVocTitle','euroSciVoc_intermediate']
# Restrict to used features + label
df = df[numeric_features + categorical_features + multilabel_fields + ['label']]
X = df.drop(columns='label')
y = df['label']
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.2, random_state=42)
print("🧱 Building pipeline...")
preprocessor = build_preprocessor(numeric_features, categorical_features, multilabel_fields)
base_model = XGBClassifier(eval_metric='logloss', n_jobs=-1)
# Optuna hyperparameter tuning (24 trials, 6 jobs parallel)
print("🎯 Training model with Optuna...")
def objective(trial):
params = {
'n_estimators': trial.suggest_int('n_estimators', 100, 300),
'max_depth': trial.suggest_int('max_depth', 3, 10),
'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.3),
'scale_pos_weight': trial.suggest_float('scale_pos_weight', 2.0, 10.0)
}
base_model.set_params(**params)
pipeline = build_pipeline(preprocessor, base_model)
scores = cross_val_score(pipeline, X_train, y_train, cv=StratifiedKFold(3, shuffle=True, random_state=42),
scoring=make_scorer(f1_score, pos_label=1),n_jobs=-1)
return scores.mean()
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=24,n_jobs=6)
best_params = study.best_trial.params
base_model.set_params(**best_params)
# Final fit and evaluation
print("✅ Training final model and evaluating...")
final_pipeline = build_pipeline(preprocessor, base_model)
final_pipeline.fit(X_train, y_train)
selector = final_pipeline.named_steps['feature_select']
if hasattr(selector, 'get_support'):
feature_names = np.array(final_pipeline.named_steps['preprocessor'].get_feature_names_out())[selector.get_support()]
else:
feature_names = np.array(final_pipeline.named_steps['preprocessor'].get_feature_names_out())
evaluate_model(final_pipeline, X_train, X_test, y_train, y_test, feature_names)
# Drift monitoring (train vs test data)
print("📊 Monitoring drift...")
X_train_p = preprocessor.transform(X_train)
X_test_p = preprocessor.transform(X_test)
if scipy.sparse.issparse(X_train_p): X_train_p = X_train_p.toarray()
if scipy.sparse.issparse(X_test_p): X_test_p = X_test_p.toarray()
selector = final_pipeline.named_steps["feature_select"]
X_train_sel = selector.transform(X_train_p)
X_test_sel = selector.transform(X_test_p)
monitor_drift(X_train_sel, X_test_sel, feature_names)
print("💾 Saving model and artifacts...")
joblib.dump(final_pipeline, "model_artifacts/model.pkl")
joblib.dump(preprocessor, "model_artifacts/preprocessor.pkl")
X_train.to_csv("model_artifacts/X_train_processed.csv", index=False)
y_train.to_csv("model_artifacts/y_train.csv", index=False)
feature_config = {
"numeric_features": numeric_features,
"categorical_features": categorical_features,
"multilabel_fields": multilabel_fields
}
json.dump(feature_config, open("model_artifacts/feature_config.json", "w"))
print("✅ Training complete. Model artifacts saved.")
def score(new_df, model_dir="model_artifacts"):
"""Score new/unseen data using the trained pipeline and explain predictions via SHAP.
Steps:
- Loads model and configs
- Prepares data and embeds text
- Predicts label and probability
- Computes SHAP values and identifies top contributing features
Args:
new_df (pd.DataFrame): Data to score.
model_dir (str): Path to saved model artifacts.
Returns:
pd.DataFrame: DataFrame with predictions, probabilities, and SHAP features.
"""
# 1) Load trained model and config
pipe = joblib.load(os.path.join(model_dir, "model.pkl"))
config = json.load(open(os.path.join(model_dir, "feature_config.json")))
# 2) Prepare & embed exactly as in training
df = prepare_data(new_df.copy(), is_train=False)
text_cols = ['title', 'objective']
sbert = SentenceTransformer('sentence-transformers/LaBSE')
os.makedirs("/content/drive/MyDrive/embeddings_test", exist_ok=True)
for col in text_cols:
embedding_file = f"/content/drive/MyDrive/embeddings_test/{col}_embeddings.npy"
# load the SVD you trained
svd = joblib.load(os.path.join(model_dir, f"{col}_svd.pkl"))
if os.path.exists(embedding_file):
print(f"Loading saved embeddings for column '{col}'...")
embeddings = np.load(embedding_file)
else:
print(f"Computing embeddings for column '{col}'...")
embeddings = sbert.encode(df[col].tolist(), show_progress_bar=True)
np.save(embedding_file, embeddings)
reduced = svd.transform(embeddings)
emb_df = pd.DataFrame(reduced,
columns=[f"{col}_embed_{i}" for i in range(reduced.shape[1])],
index=df.index)
df = pd.concat([df, emb_df], axis=1)
# 3) Build the final feature set
X = df[ config["numeric_features"]
+ config["categorical_features"]
+ config["multilabel_fields"] ]
# 4) Predict & attach to DataFrame
preds = pipe.predict(X)
probs = pipe.predict_proba(X)[:, 1] # assume binary and positive class = index 1
df["predicted_label"] = preds
df["predicted_prob"] = probs
# 5) SHAP explanations on the *selected* features
# (we need to re-run preprocessing + feature_selection)
preproc = pipe.named_steps["preprocessor"]
select = pipe.named_steps["feature_select"]
clf = pipe.named_steps["classifier"].calibrated_classifiers_[0].estimator
X_proc = preproc.transform(X)
if scipy.sparse.issparse(X_proc):
X_proc = X_proc.toarray()
X_sel = select.transform(X_proc)
feature_names = select.get_feature_names_out(
preproc.get_feature_names_out()
)
# Use a TreeExplainer directly on the XGB base estimator
explainer = shap.Explainer(clf, X_sel, feature_names=feature_names)
shap_vals = explainer(X_sel) # returns a ShapleyValues object
# 6) For each row, pick top-6 absolute contributors
shap_df = pd.DataFrame(shap_vals.values, columns=feature_names, index=df.index)
# 7) get absolute values
abs_shap = shap_df.abs()
# 8) for each row, record the top‐6 feature names by absolute magnitude
top_feats = abs_shap.apply(lambda row: row.nlargest(6).index.tolist(), axis=1)
# 9) convert that to six separate columns
feat_cols = [f"top{i}_feature" for i in range(1,7)]
df[feat_cols] = pd.DataFrame(top_feats.tolist(), index=df.index)
# 10) now build the *true* SHAP values by looking up each name in shap_df
# for each row, shap_df.loc[idx, feat] is the signed value
top_vals = [
[ shap_df.loc[idx, feat] for feat in feats ]
for idx, feats in top_feats.items()
]
# 11) store them in your six shap‐value columns
val_cols = [f"top{i}_shap" for i in range(1,7)]
df[val_cols] = pd.DataFrame(top_vals, index=df.index)
return df
def clean_feature_name(raw: str) -> str:
"""
- cat__: "cat__feature_value" → "Feature: Value"
- num__: "num__some_count" → "Some Count"
- mlb_: "mlb_list_activityType__list_activityType_Research"
→ "List Activity Type: Research"
"""
if not raw:
return ""
# 1) cat__
if raw.startswith("cat__"):
s = raw[len("cat__"):]
col, val = (s.split("__", 1) + [None])[:2]
col_c = col.replace("_", " ").title()
if val:
val_c = val.replace("_", " ").title()
return f"{col_c}: {val_c}"
return col_c
# 2) num__
if raw.startswith("num__"):
s = raw[len("num__"):]
return s.replace("_", " ").replace('n ','Number of ')
# 3) mlb_
if raw.startswith("mlb_"):
s = raw[len("mlb_"):]
col_part, val_part = (s.split("__", 1) + [None])[:2]
# drop leading "list_" on the column
if col_part.startswith("list_"):
col_inner = col_part[len("list_"):]
else:
col_inner = col_part
col_c = col_inner.replace("_", " ").title()
col_c = "List " + col_c
if val_part:
# drop "list_{col_inner}_" or leading "list_"
prefix = f"list_{col_inner}_"
if val_part.startswith(prefix):
val_inner = val_part[len(prefix):]
elif val_part.startswith("list_"):
val_inner = val_part[len("list_"):]
else:
val_inner = val_part
val_c = val_inner.replace("_", " ").title()
return f"{col_c}: {val_c}"
return col_c
# fallback: replace __ → ": ", _ → " "
return raw.replace("__", ": ").replace("_", " ").title()
def preprocess_feature_names(df: pl.DataFrame) -> pl.DataFrame:
transforms = []
# clean and round top-6 features & shap values
for i in range(1, 7):
fcol = f"top{i}_feature"
scol = f"top{i}_shap"
if fcol in df.columns:
transforms.append(
pl.col(fcol)
.map_elements(clean_feature_name, return_dtype=pl.Utf8)
.alias(fcol)
)
if scol in df.columns:
transforms.append(
pl.col(scol)
.round(4)
.alias(scol)
)
# round overall predicted probability
if "predicted_prob" in df.columns:
transforms.append(
pl.col("predicted_prob")
.round(4)
.alias("predicted_prob")
)
# 1) build the full list of embed-columns
embed_cols = [f"title_embed_{i}" for i in range(50)] + \
[f"objective_embed_{i}" for i in range(50)]
# 2) keep only the ones that actually exist in df.columns
to_drop = [c for c in embed_cols if c in df.columns]
# 3) drop them
df = df.drop(to_drop)
return df.with_columns(transforms)
if __name__ == "__main__":
# Entry point for training and scoring: loads data from Google Cloud Storage,
# builds model and artifacts, then scores the same data as a test.
bucket = "mda_eu_project"
path = "data/consolidated_clean.parquet"
uri = f"gs://{bucket}/{path}"
fs = gcsfs.GCSFileSystem()
with fs.open(uri, "rb") as f:
df = pl.read_parquet(f).to_pandas()
status_prediction_model(df)
df_clean = preprocess_feature_names(pl.from_pandas(score(df)))
df_clean.head(10) |