File size: 14,588 Bytes
f334c8f
0fde500
 
 
 
 
 
 
 
f334c8f
0fde500
 
 
 
 
 
 
f334c8f
0fde500
 
 
 
f334c8f
0fde500
 
f334c8f
0fde500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f334c8f
0fde500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f334c8f
0fde500
 
f334c8f
0fde500
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import streamlit as st
import pandas as pd
import requests
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
import tempfile
import os

# 設置頁面配置
st.set_page_config(
    page_title="碳排放數據可視化分析",
    page_icon="🌱",
    layout="wide",
    initial_sidebar_state="expanded"
)

# 標題和介紹
st.title("🌱 碳排放數據可視化分析")
st.markdown("---")
st.write("此應用程式分析台灣公司的碳排放數據,包括範疇一和範疇二的排放量。")

# 側邊欄設置
st.sidebar.header("⚙️ 設置選項")

# 數據載入功能
@st.cache_data
def load_data():
    """載入並處理碳排放數據"""
    try:
        # 顯示載入狀態
        with st.spinner("正在載入數據..."):
            url = "https://mopsfin.twse.com.tw/opendata/t187ap46_O_1.csv"
            response = requests.get(url)
            
            # 使用臨時文件
            with tempfile.NamedTemporaryFile(mode='wb', suffix='.csv', delete=False) as tmp_file:
                tmp_file.write(response.content)
                tmp_file_path = tmp_file.name
            
            # 讀取CSV文件
            df = pd.read_csv(tmp_file_path, encoding="utf-8-sig")
            
            # 清理臨時文件
            os.unlink(tmp_file_path)
            
            # 數據清理
            original_shape = df.shape
            df = df.dropna()
            
            # 尋找正確的欄位名稱
            company_cols = [col for col in df.columns if "公司" in col or "代號" in col or "股票" in col]
            emission_cols = [col for col in df.columns if "排放" in col]
            
            # 自動識別欄位
            company_col = "公司代號"
            scope1_col = "範疇一排放量(公噸CO2e)"
            scope2_col = "範疇二排放量(公噸CO2e)"
            
            if company_col not in df.columns and company_cols:
                company_col = company_cols[0]
            
            if scope1_col not in df.columns:
                scope1_candidates = [col for col in emission_cols if "範疇一" in col or "Scope1" in col]
                if scope1_candidates:
                    scope1_col = scope1_candidates[0]
            
            if scope2_col not in df.columns:
                scope2_candidates = [col for col in emission_cols if "範疇二" in col or "Scope2" in col]
                if scope2_candidates:
                    scope2_col = scope2_candidates[0]
            
            # 轉換數值格式
            if scope1_col in df.columns:
                df[scope1_col] = pd.to_numeric(df[scope1_col], errors='coerce')
            if scope2_col in df.columns:
                df[scope2_col] = pd.to_numeric(df[scope2_col], errors='coerce')
            
            # 移除轉換後的空值
            available_cols = [col for col in [scope1_col, scope2_col, company_col] if col in df.columns]
            df = df.dropna(subset=available_cols)
            
            return df, original_shape, company_col, scope1_col, scope2_col, company_cols, emission_cols
    
    except Exception as e:
        st.error(f"載入數據時發生錯誤: {str(e)}")
        return None, None, None, None, None, None, None

# 載入數據
data_result = load_data()
if data_result[0] is not None:
    df, original_shape, company_col, scope1_col, scope2_col, company_cols, emission_cols = data_result
    
    # 顯示數據基本信息
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric("原始數據筆數", original_shape[0])
    with col2:
        st.metric("處理後數據筆數", df.shape[0])
    with col3:
        st.metric("總欄位數", df.shape[1])
    
    # 側邊欄控制項
    st.sidebar.subheader("📊 圖表選項")
    
    # 圖表類型選擇
    chart_types = st.sidebar.multiselect(
        "選擇要顯示的圖表:",
        ["旭日圖", "雙層圓餅圖", "散點圖", "綜合旭日圖"],
        default=["旭日圖", "雙層圓餅圖"]
    )
    
    # 公司數量選擇
    max_companies = min(30, len(df))
    num_companies = st.sidebar.slider(
        "顯示公司數量:",
        min_value=5,
        max_value=max_companies,
        value=min(15, max_companies),
        step=5
    )
    
    # 顯示數據統計
    if st.sidebar.checkbox("顯示數據統計", value=True):
        st.subheader("📈 數據統計摘要")
        
        if all(col in df.columns for col in [scope1_col, scope2_col]):
            col1, col2 = st.columns(2)
            
            with col1:
                st.write("**範疇一排放量統計:**")
                scope1_stats = df[scope1_col].describe()
                st.write(f"- 平均值: {scope1_stats['mean']:.2f} 公噸CO2e")
                st.write(f"- 中位數: {scope1_stats['50%']:.2f} 公噸CO2e")
                st.write(f"- 最大值: {scope1_stats['max']:.2f} 公噸CO2e")
                st.write(f"- 最小值: {scope1_stats['min']:.2f} 公噸CO2e")
            
            with col2:
                st.write("**範疇二排放量統計:**")
                scope2_stats = df[scope2_col].describe()
                st.write(f"- 平均值: {scope2_stats['mean']:.2f} 公噸CO2e")
                st.write(f"- 中位數: {scope2_stats['50%']:.2f} 公噸CO2e")
                st.write(f"- 最大值: {scope2_stats['max']:.2f} 公噸CO2e")
                st.write(f"- 最小值: {scope2_stats['min']:.2f} 公噸CO2e")
    
    # 圖表生成函數
    def create_sunburst_chart(df, num_companies):
        """創建旭日圖"""
        if all(col in df.columns for col in [company_col, scope1_col, scope2_col]):
            df_top = df.nlargest(num_companies, scope1_col)
            sunburst_data = []
            
            for _, row in df_top.iterrows():
                company = str(row[company_col])
                scope1 = row[scope1_col]
                scope2 = row[scope2_col]
                
                sunburst_data.extend([
                    dict(ids=f"公司-{company}", labels=f"公司 {company}", parents="", values=scope1 + scope2),
                    dict(ids=f"範疇一-{company}", labels=f"範疇一: {scope1:.0f}", parents=f"公司-{company}", values=scope1),
                    dict(ids=f"範疇二-{company}", labels=f"範疇二: {scope2:.0f}", parents=f"公司-{company}", values=scope2)
                ])
            
            fig_sunburst = go.Figure(go.Sunburst(
                ids=[d['ids'] for d in sunburst_data],
                labels=[d['labels'] for d in sunburst_data],
                parents=[d['parents'] for d in sunburst_data],
                values=[d['values'] for d in sunburst_data],
                branchvalues="total",
                hovertemplate='<b>%{label}</b><br>排放量: %{value:.0f} 公噸CO2e<extra></extra>',
                maxdepth=3
            ))
            
            fig_sunburst.update_layout(
                title=f"碳排放量旭日圖 (前{num_companies}家公司)",
                font_size=12,
                height=600
            )
            
            return fig_sunburst
        return None
    
    def create_nested_pie_chart(df, num_companies):
        """創建雙層圓餅圖"""
        if all(col in df.columns for col in [company_col, scope1_col, scope2_col]):
            df_top = df.nlargest(num_companies, scope1_col)
            
            fig = make_subplots(
                rows=1, cols=2,
                specs=[[{"type": "pie"}, {"type": "pie"}]],
                subplot_titles=("範疇一排放量", "範疇二排放量")
            )
            
            fig.add_trace(go.Pie(
                labels=df_top[company_col],
                values=df_top[scope1_col],
                name="範疇一",
                hovertemplate='<b>%{label}</b><br>範疇一排放量: %{value:.0f} 公噸CO2e<br>佔比: %{percent}<extra></extra>',
                textinfo='label+percent',
                textposition='auto'
            ), row=1, col=1)
            
            fig.add_trace(go.Pie(
                labels=df_top[company_col],
                values=df_top[scope2_col],
                name="範疇二",
                hovertemplate='<b>%{label}</b><br>範疇二排放量: %{value:.0f} 公噸CO2e<br>佔比: %{percent}<extra></extra>',
                textinfo='label+percent',
                textposition='auto'
            ), row=1, col=2)
            
            fig.update_layout(
                title_text=f"碳排放量圓餅圖比較 (前{num_companies}家公司)",
                showlegend=True,
                height=600
            )
            
            return fig
        return None
    
    def create_scatter_plot(df):
        """創建散點圖"""
        if all(col in df.columns for col in [company_col, scope1_col, scope2_col]):
            fig_scatter = px.scatter(
                df,
                x=scope1_col,
                y=scope2_col,
                hover_data=[company_col],
                title="範疇一 vs 範疇二排放量散點圖",
                labels={
                    scope1_col: "範疇一排放量 (公噸CO2e)",
                    scope2_col: "範疇二排放量 (公噸CO2e)"
                },
                hover_name=company_col
            )
            
            fig_scatter.update_layout(height=600)
            return fig_scatter
        return None
    
    def create_comprehensive_sunburst(df, num_companies):
        """創建綜合旭日圖"""
        if all(col in df.columns for col in [company_col, scope1_col, scope2_col]):
            df_copy = df.copy()
            df_copy['total_emission'] = df_copy[scope1_col] + df_copy[scope2_col]
            df_copy['emission_level'] = pd.cut(df_copy['total_emission'], 
                                            bins=[0, 1000, 5000, 20000, float('inf')], 
                                            labels=['低排放(<1K)', '中排放(1K-5K)', '高排放(5K-20K)', '超高排放(>20K)'])
            
            sunburst_data = []
            companies_per_level = max(1, num_companies // 4)
            
            for level in df_copy['emission_level'].unique():
                if pd.isna(level):
                    continue
                level_companies = df_copy[df_copy['emission_level'] == level].nlargest(companies_per_level, 'total_emission')
                
                for _, row in level_companies.iterrows():
                    company = str(row[company_col])
                    scope1 = row[scope1_col]
                    scope2 = row[scope2_col]
                    total = scope1 + scope2
                    
                    sunburst_data.extend([
                        dict(ids=str(level), labels=str(level), parents="", values=total),
                        dict(ids=f"{level}-{company}", labels=f"{company}", parents=str(level), values=total),
                        dict(ids=f"{level}-{company}-範疇一", labels=f"範疇一({scope1:.0f})", 
                             parents=f"{level}-{company}", values=scope1),
                        dict(ids=f"{level}-{company}-範疇二", labels=f"範疇二({scope2:.0f})", 
                             parents=f"{level}-{company}", values=scope2)
                    ])
            
            fig_comprehensive = go.Figure(go.Sunburst(
                ids=[d['ids'] for d in sunburst_data],
                labels=[d['labels'] for d in sunburst_data],
                parents=[d['parents'] for d in sunburst_data],
                values=[d['values'] for d in sunburst_data],
                branchvalues="total",
                hovertemplate='<b>%{label}</b><br>排放量: %{value:.0f} 公噸CO2e<extra></extra>',
                maxdepth=4
            ))
            
            fig_comprehensive.update_layout(
                title="分級碳排放量旭日圖",
                font_size=10,
                height=700
            )
            
            return fig_comprehensive
        return None
    
    # 顯示選中的圖表
    st.subheader("📊 互動式圖表")
    
    if "旭日圖" in chart_types:
        st.write("### 🌞 旭日圖")
        fig1 = create_sunburst_chart(df, num_companies)
        if fig1:
            st.plotly_chart(fig1, use_container_width=True)
        else:
            st.error("無法創建旭日圖,缺少必要欄位")
    
    if "雙層圓餅圖" in chart_types:
        st.write("### 🥧 雙層圓餅圖")
        fig2 = create_nested_pie_chart(df, num_companies)
        if fig2:
            st.plotly_chart(fig2, use_container_width=True)
        else:
            st.error("無法創建圓餅圖,缺少必要欄位")
    
    if "散點圖" in chart_types:
        st.write("### 📈 散點圖")
        fig3 = create_scatter_plot(df)
        if fig3:
            st.plotly_chart(fig3, use_container_width=True)
        else:
            st.error("無法創建散點圖,缺少必要欄位")
    
    if "綜合旭日圖" in chart_types:
        st.write("### 🌟 綜合旭日圖")
        fig4 = create_comprehensive_sunburst(df, num_companies)
        if fig4:
            st.plotly_chart(fig4, use_container_width=True)
        else:
            st.error("無法創建綜合旭日圖,缺少必要欄位")
    
    # 顯示原始數據
    if st.sidebar.checkbox("顯示原始數據"):
        st.subheader("📋 原始數據預覽")
        st.dataframe(df.head(100), use_container_width=True)
    
    # 數據下載功能
    if st.sidebar.button("下載處理後數據"):
        csv = df.to_csv(index=False, encoding='utf-8-sig')
        st.sidebar.download_button(
            label="💾 下載 CSV 文件",
            data=csv,
            file_name="carbon_emission_data.csv",
            mime="text/csv"
        )
    
    # 偵錯信息
    if st.sidebar.checkbox("顯示偵錯信息"):
        st.subheader("🔧 偵錯信息")
        st.write("**識別的欄位:**")
        st.write(f"- 公司欄位: {company_col}")
        st.write(f"- 範疇一欄位: {scope1_col}")
        st.write(f"- 範疇二欄位: {scope2_col}")
        st.write("**所有可用欄位:**")
        st.write(df.columns.tolist())

else:
    st.error("無法載入數據,請檢查網路連接或數據源。")

# 頁面底部信息
st.markdown("---")
st.markdown(
    """
    **數據來源:** 台灣證券交易所公開資訊觀測站  
    **更新時間:** 根據數據源自動更新  
    **製作:** Streamlit 碳排放數據分析應用
    """
)