import os import requests import pandas as pd import streamlit as st import json import time from pytrends.request import TrendReq import plotly.express as px import plotly.graph_objects as go from tenacity import retry, wait_exponential, stop_after_attempt # Set up Streamlit app title st.title("🐣MOMO 🆚 PCHOME 商品搜索和 Google Trends 分析👁️‍🗨️") # Get user input for keyword keyword = st.text_input("請輸入要搜索的關鍵字: ", "筆電") # Get date range input for Google Trends start_date = st.date_input("請選擇開始日期", value=pd.to_datetime("2024-08-01")) end_date = st.date_input("請選擇結束日期", value=pd.to_datetime("2024-08-11")) page_number = st.number_input("請輸入要搜索的頁數: ", min_value=1, max_value=100, value=1, step=1) # Format timeframe for Google Trends search_timeframe = f"{start_date} {end_date}" # Create a button to start the scraping process if st.button("開始搜索"): start_time = time.time() # MOMO scraping momo_url = "https://apisearch.momoshop.com.tw/momoSearchCloud/moec/textSearch" momo_headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36" } momo_payload = { "host": "momoshop", "flag": "searchEngine", "data": { "searchValue": keyword, "curPage": str(page_number), "priceS": "0", "priceE": "9999999", "searchType": "1" } } momo_response = requests.post(momo_url, headers=momo_headers, json=momo_payload) if momo_response.status_code == 200: momo_data = momo_response.json().get('rtnSearchData', {}).get('goodsInfoList', []) momo_product_list = [] for product in momo_data: name = product.get('goodsName', '') price = product.get('goodsPrice', '') price_str = str(price).split('(')[0].replace(',', '').replace('$', '') try: product_price = float(price_str) except ValueError: product_price = 0 momo_product_list.append({'title': name, 'price': product_price, 'platform': 'MOMO'}) momo_df = pd.DataFrame(momo_product_list) st.write("MOMO 商品數據:", momo_df) # MOMO data analysis momo_avg_price = momo_df['price'].mean() st.write(f"MOMO 平均價格: {momo_avg_price:.2f}") st.write(f"MOMO 最高價格: {momo_df['price'].max():.2f}") st.write(f"MOMO 最低價格: {momo_df['price'].min():.2f}") # MOMO visualization with Plotly fig = px.scatter(momo_df[:70], x='title', y='price', hover_data=['title'], title=f'MOMO 電商網站上 "{keyword}" 的銷售價格', labels={'title': '商品名稱', 'price': '價格'}) fig.update_xaxes(tickangle=45, tickmode='array', tickvals=list(range(len(momo_df[:70]))), ticktext=momo_df['title'][:70]) fig.add_hline(y=momo_avg_price, line_dash="dash", line_color="red", annotation_text=f"參考價格: {momo_avg_price:.2f}", annotation_position="bottom right") fig.update_layout(height=600) st.plotly_chart(fig) # MOMO Sunburst Chart momo_sunburst_data = momo_df.copy() momo_sunburst_data['price_range'] = pd.cut(momo_sunburst_data['price'], bins=[0, 1000, 5000, 10000, 50000, float('inf')], labels=['0-1000', '1001-5000', '5001-10000', '10001-50000', '50000+']) fig = px.sunburst(momo_sunburst_data, path=['price_range', 'title'], values='price', title=f'MOMO "{keyword}" 價格分佈 (Sunburst 圖)') fig.update_layout(height=800) st.plotly_chart(fig) else: st.error(f"MOMO 請求失敗,狀態碼: {momo_response.status_code}") # PCHOME scraping pchome_base_url = 'https://ecshweb.pchome.com.tw/search/v3.3/all/results?q=' pchome_data = pd.DataFrame() for i in range(1, page_number + 1): pchome_url = f'{pchome_base_url}{keyword}&page={i}&sort=sale/dc' pchome_response = requests.get(pchome_url) if pchome_response.status_code == 200: pchome_json_data = json.loads(pchome_response.content) pchome_df = pd.DataFrame(pchome_json_data['prods']) # Safely select only available columns available_columns = ['name', 'describe', 'price', 'orig'] selected_columns = [col for col in available_columns if col in pchome_df.columns] pchome_df = pchome_df[selected_columns] if 'orig' in pchome_df.columns: pchome_df = pchome_df.rename(columns={'orig': 'original_price'}) pchome_df['platform'] = 'PCHOME' # Add platform identifier pchome_df['price'] = pchome_df['price'].astype(float) # Ensure price is float pchome_data = pd.concat([pchome_data, pchome_df]) time.sleep(1) else: st.error(f"PCHOME 請求失敗,狀態碼: {pchome_response.status_code}") if not pchome_data.empty: st.write("PCHOME 商品數據:", pchome_data) # PCHOME data analysis pchome_avg_price = pchome_data['price'].mean() st.write(f"PCHOME 平均價格: {pchome_avg_price:.2f}") st.write(f"PCHOME 最高價格: {pchome_data['price'].max():.2f}") st.write(f"PCHOME 最低價格: {pchome_data['price'].min():.2f}") # PCHOME visualization with Plotly fig = px.scatter(pchome_data[:70], x='name', y='price', hover_data=['name'], title=f'PCHOME 電商網站上 "{keyword}" 的銷售價格', labels={'name': '商品名稱', 'price': '價格'}) fig.update_xaxes(tickangle=45, tickmode='array', tickvals=list(range(len(pchome_data[:70]))), ticktext=pchome_data['name'][:70]) fig.add_hline(y=pchome_avg_price, line_dash="dash", line_color="red", annotation_text=f"參考價格: {pchome_avg_price:.2f}", annotation_position="bottom right") fig.update_layout(height=600) st.plotly_chart(fig) # PCHOME Sunburst Chart pchome_sunburst_data = pchome_data.copy() pchome_sunburst_data['price_range'] = pd.cut(pchome_sunburst_data['price'], bins=[0, 1000, 5000, 10000, 50000, float('inf')], labels=['0-1000', '1001-5000', '5001-10000', '10001-50000', '50000+']) fig = px.sunburst(pchome_sunburst_data, path=['price_range', 'name'], values='price', title=f'PCHOME "{keyword}" 價格分佈 (Sunburst 圖)') fig.update_layout(height=800) st.plotly_chart(fig) # Combine MOMO and PCHOME data combined_data = pd.concat([momo_df, pchome_data], ignore_index=True) st.write("合併的商品數據:", combined_data) # Data analysis on combined data combined_avg_price = combined_data['price'].mean() st.write(f"合併後的平均價格: {combined_avg_price:.2f}") # Google Trends analysis st.subheader("Google趨勢分析") # Retry mechanism with exponential backoff @retry(wait=wait_exponential(multiplier=1, min=4, max=60), stop=stop_after_attempt(5)) def fetch_trends_data(pytrend): return pytrend.interest_over_time() pytrend = TrendReq(hl="zh-TW", tz=-480) pytrend.build_payload( kw_list=[keyword], cat=3, timeframe=search_timeframe, geo="TW", gprop="" ) try: trends_df = fetch_trends_data(pytrend) trends_df = trends_df.drop(["isPartial"], axis=1) # 使用Plotly創建趨勢圖 fig = px.line(trends_df, x=trends_df.index, y=keyword, title=f"Google趨勢 - '{keyword}' 的趨勢分析") fig.update_traces(mode='lines+markers') fig.update_layout(xaxis_title="時間", yaxis_title="興趣指數", height=600) st.plotly_chart(fig) # 顯示趨勢數據統計 st.write("趨勢數據統計:") st.write(trends_df.describe()) except Exception as e: st.error(f"獲取Google趨勢數據時出錯: {e}") end_time = time.time() st.write(f"執行時間: {end_time - start_time:.2f} 秒") #