#!/usr/bin/env python3 import os import tensorflow as tf from tensorflow.keras.layers import Input, Flatten, Dense, Subtract from tensorflow.keras.models import Model import sys sys.path.append(os.getcwd()) from config import SIA_MODEL_PATH def build_dummy_siamese(): inp_a = Input(shape=(224, 224, 1), name="img_a") inp_b = Input(shape=(224, 224, 1), name="img_b") encoder_input = Input(shape=(224, 224, 1)) x = Flatten()(encoder_input) x = Dense(16, activation="relu")(x) encoder = Model(encoder_input, x) encoded_a = encoder(inp_a) encoded_b = encoder(inp_b) distance = Subtract()([encoded_a, encoded_b]) model = Model(inputs=[inp_a, inp_b], outputs=distance) return model if __name__ == "__main__": print("Building and converting dummy Siamese model...") model = build_dummy_siamese() converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_model = converter.convert() os.makedirs(os.path.dirname(SIA_MODEL_PATH), exist_ok=True) with open(SIA_MODEL_PATH, "wb") as f: f.write(tflite_model) print(f"✅ Dummy TFLite signature model saved to '{SIA_MODEL_PATH}'")